
1

Toward Optimal Resource Provisioning for Cloud
MapReduce and Hybrid Cloud Applications

Arkaitz Ruiz-Alvarez, In Kee Kim, Marty Humphrey

Department of Computer Science
University of Virginia

Charlottesville, VA, USA

Abstract—Given the variety of resources available in public

clouds and locally (hybrid clouds), it can be very difficult to

determine the best number and type of resources to allocate

(and where) for a given activity. In order to solve this problem

we first define the requested computation in terms of an

Integer Linear Programming (ILP) problem and then use an

efficient ILP solver to make a provisioning decision in a few

milliseconds. Our approach is based on the two most

important metrics for the user: cost and job execution time.

Thus, based on the user’s preferences we can favor solutions

that optimize speed or cost or a certain combination of both

(e.g. cheapest solution that meets a certain deadline). We

evaluate our approach with two classes of cloud applications:

MapReduce applications, and Monte Carlo simulations. A

significant advantage in our approach is that our solution has

been proved optimal by the ILP solver; the set of the

scheduling decisions based on our model are plotted on a time

vs. cost graph that forms a Pareto efficient frontier. This way,

we can avoid the pitfalls of a naïve strategy that can lead to a

great increase in cost (91%) or job running time (21%)

compared to optimal.

Keywords-cloud computing; ILP; resource provisioning

I. INTRODUCTION
Cloud computing [1] has the potential to alter the

traditional role of the scheduler, which has been to control
access to certain shared resources (e.g. a single CPU or a
cluster). The scheduler assigns these resources to processes,
threads or parallel applications in such a way that optimizes
throughput, latency, fairness and/or other metrics. However,
in a cloud environment, applications within a reasonable
range of computing requirements operate under the
abstraction that computational resources are unlimited and
almost immediately attainable. For example, in a local
cluster (managed by PBS [2] or another scheduler) an
application user may generate a request of 25 machines for
40 minutes for the scheduler and then the user will wait for
the application to run. In cloud computing the user may
request the application to immediately boot 25 machines in
Amazon EC2 [3] and run the application for as long as it
needs to. A scheduler that simply replies to requests
composed by a number of machines and the job’s execution
time seems trivial to implement in cloud computing since
there is no need to worry about (virtual) resource sharing. In
this research we ask the following questions: Is this
interface the correct one for cloud computing applications?

Should a scheduler optimize some metric instead of blindly
processing a request?

We believe that there are new requirements for resource
managers for certain cloud applications (e.g.[4][5][6],[7]).
Thus, we are not looking for a general scheduler, but for a
scheduler that takes advantage of the characteristics of a
specific class of applications to produce a scheduling plan
that is more cost-effective and/or faster. The first class of
applications that we consider in this paper is MapReduce [8]
jobs. (Note that we are not researching where to place a
MapReduce job within a given MapReduce cluster). The
second one is simulations whose running time can be
estimated (similar also to Monte Carlo algorithms). For
each, we generate an Integer Linear Programming (ILP)
problem based on the information from the cloud providers,
the local resources and the application. The solution to this
ILP problem will be the optimal assignment of compute
resources based on cost or execution time.

To make an optimal scheduling decision for a
MapReduce job we need to know: the amount of work to be
done [9], the processing capacity of each instance (and its
cost) and a constraint on the job’s execution time (provided
by the user at submission time). The output of our algorithm
will be the amount and type of instances to use during the
map, the same during the reduce phase, and an estimation of
the cost and duration. For example, the output could be
“Start 2 High CPU Medium instances and 17 High CPU
Extra-large instances and run for 3 hours at a cost of $6.30”.
As we will show in the next sections, the scheduling
decisions made by this strategy form a Pareto efficient
frontier that are faster or cheaper than any alternatives (and
often both by a margin as high as 2.6x cheaper and 5.46x
faster for naïve strategies).

Our second application class is large-scale Monte Carlos
in hybrid clouds. Our representative case of this class is our
Watershed model calibration system [10][11], which
attempts to calibrate a watershed model by comparing the
simulation results to actual observations. Each job starts
1,000 different tasks that can be assigned to a local
Windows HPC cluster or to instances in Microsoft Azure
[12]. Using the same information that we gather for the
MapReduce we present our ILP solver with a similar
problem; the solutions are also optimal and form a Pareto
frontier. We compare our approach with both naïve and
incremental strategies. Our approach avoids the potential
pitfalls of naïve scheduling where the cost can be as high as

Preliminary version. Final version to appear in 8th IEEE International Conference

on Cloud Computing (IEEE Cloud 2015), June 27 - July 2, 2015, New York, USA

2

91% more. The incremental strategy uses the same
information as our ILP solver but it still can be up to 11%
slower or 38% more expensive.

A variation to this scheduling algorithm is the possible
replication of the input datasets. Our final evaluation is a
watershed model calibration with 5 different models, whose
input data may be stored in Microsoft Azure, in the local
cluster or in both. We generalize our previous definition to
support different tasks and data location. We compare our
strategy with a data co-location algorithm (which starts the
computation where the data is). Our approach is superior to
data co-location even in data co-location’s best case (from
5.4% to 18.8% more expensive for the same running time).

In summary, the contributions of this paper are:
• We introduce two ILP problem formulations whose

solutions provide optimal scheduling decisions for two
classes of cloud applications.

• We show that a MapReduce job using our algorithm can
be completed faster and cheaper that a naïve strategy,
often significantly (2.6x cheaper and 5.5x faster).

• We show that a Monte Carlo job in a hybrid cloud using
our algorithm is provided optimal scheduling solutions
that are more cost effective than other advanced
strategies (up to 11% slower and 38% more expensive
for incremental), even comparing it to the other’s best
case scenario (data co-location is 5.4% to 18.8% more
expensive).

The rest of the paper is organized as follows: we review
related work in Section II. We introduce the ILP problem
formulation strategies and solver in Section III. The
MapReduce use case is presented in Section IV. We present
the results of our research with Monte Carlo simulations in
hybrid clouds in Section V before concluding with Section
VI.

II. RELATED WORK
Hybrid clouds and “cloudbursting” are logical

extensions of the already existing local resources,
augmented with the capabilities of the cloud. This type of
hybrid computing [13] has been examined as a potential
solution for taking advantage of the scalability benefits of
the cloud while keeping the performance benefits of the
local cluster. These Elastic Clusters are based on software
such as OpenNebula [14], Eucalyptus [15] or in application
specific middleware [16] (Windows HPC and Windows
Azure integration). Interesting algorithms for a cloud
bursting scheduler have also been suggested [17]; our
approach differs in that we do not consider a job queue but
rather make a decision on each job as they come and we are
focusing on application specific jobs rather than on a
general scheduler (albeit the information required by both
approaches is similar). This last approach from S. Kailasam
et al. also focuses on data intensive computing, similar to
the approach taken by T. Bicer et al. [18] where they
suggest middleware to expand the resources available to
MapReduce jobs while taking into account the transfer of
data for data intensive jobs. In our present work we focus
more on the one datacenter approach for MapReduce and
the choices related to the computational resources, thus we

do not take into account data storage. In our second use
case, Watershed, we have not seen watershed models (the
input data) of more than a few megabytes; even if the
models grow up to 1 GB (which we account for in our
work) the computational costs are going to exceed data
storage costs by a wide margin. We believe that the data
allocation should be planned in advance [19]; however it
could be possible to in the future extend our approach to
account for multiple datacenters and possible data transfers.

We have also mentioned that our approach uses ILP
solvers; this work is based upon and could not have been
possible without the improvements made on the efficiency
of Boolean satisfiability [21] and ILP solvers [22].

III. ILP SOLVER
The core of our approach is to generate an Integer Linear

Programming (ILP) problem based on the input data and
whose solution is the scheduling decision (number and type
of instances at job start time and over time). We need to use
an integer linear programming model since the number of
instances that are used at any given time needs to be an
integer number. The main advantage to this approach is that
the ILP solver will return an optimal solution; thus no other
approach can be better (at most is equal), given the problem
model. The two potential issues with this approach are the
validity of the problem model and the running time. In the
next sections we will present the problem model for each
MapReduce and Watershed.

Based on our previous experience we do not consider the
running time of the ILP solver to be an issue. Even though
the problem is NP hard, recent solvers are remarkably
efficient for problems that are small enough. In previous
research [19] [20] we used an ILP approach to provide a
data management algorithm for cloud storage. In this paper
we found that a problem can be solved under a second if we
have less than 2,000 variables; in our model that would be
equivalent to managing storage data for an application with
3 different datasets where there are 48 different valid
storage systems for each dataset. As we will present in the
following sections, problem sizes for our scheduler are
smaller than this: the number of variables for Watershed are
O(n*m), where n is the number of machine types (5 for each
Windows Azure datacenter that we consider) and m is the
number of time intervals (12 for the examples presented in
this paper). The constant factors behind the O notation are
also small (lesser than 2). The average time the scheduler
spends in the solver phase for Watershed is 9 milliseconds.
Thus, we believe that this approach will remain viable even
if we scale up the number of datacenters or machine types.

Our scheduler was written in C# with the solver interface
being the Microsoft Solver Foundation and the actual solver
used is lpsolve [22]. The results based on simulation were
run in a desktop machine (Dual Core 2.40 GHz, 2 GB of
RAM). The experimental results with Watershed were run on
Windows Azure in the Chicago datacenter and our local
Windows HPC cluster with 16 cores.

IV. MAPREDUCE
MapReduce is a popular framework for data parallel

applications with an open source implementation, Hadoop

3

[23]. The Amazon cloud offers running Hadoop jobs as a
service, which is called Elastic MapReduce (EMR). A user
is able to go to the website, select the type and number of
instances to run, select the input and output data, and start
the job execution. Amazon also offers a programmatic
interface that on top of the job configuration and starting
commands includes others such as resizing the number of
instances being used.

To provide an optimal decision, we need an estimation
of the time it takes to process the map and reduce phases on
different machines. This estimation comes from
benchmarking the application on different instance types.
Since the MapReduce jobs are data parallel it should be
possible to obtain a good estimation of the running time of
an application by executing a subset of it. Aside from this
benchmarking information we need a deadline from the
user; our solution will find the cheapest way to run the job
and meet the deadline.

A. Problem Formulation

We model a MapReduce job as a set of instances of
possibly different types during the map phase and another
set of instances for the reduce phase. We find a glossary of
all the variables used in the following equations and their
type in Table 1. In order to find the cheapest solution for the
user we generate an ILP problem in which the objective
functions is the cost of the job:

���: ∑ ��	
�,
 �,
 (1)

Here, each variable costi,j has two possible values: 0 or
the cost of running the job using i hours for the map phase
and j hours for the reduce phase. Therefore, all the costi,j will
have a value of 0, except the one with the minimum cost,
which corresponds to the solution of our problem. Each
costi,j is related to the variables xmixrj, which are 0-1 integer
variables. Only one variable will be equal to one, and that
variable corresponds to the number of hours for the map (i)
and reduce (j) phases in the solution. For example, if the
duration is 5 billable hours for the map time and 1 billable
hour for the reduce time then xm5xr1 will be one. Thus, we
would like to define each costi,j as the actual cost multiplied
by the corresponding xmixrj. This, however, will lead to a
non-integer constraint, so we convert the problem by
introducing three different constraints instead of one non
linear: costi,j = (i * cost per hour map + j * cost per hour
reduce) * xmixrj. We accomplish this by using a
MAXMONEY constant (an amount of money that cannot be
spent by the job) and the following (2), (3) and (4):

��	
�,
 ≤ �������� ∗ �����
 (2)

��	
�,
 − � ∗ ��	
 ��� ℎ��� ��� − � ∗
��	
 ��� ℎ��� �� ��� − �������� ∗ �����
 ≥
 −�������� (3)

��	
�,
 − � ∗ ��	
 ��� ℎ��� ��� − � ∗
��	
 ��� ℎ��� �� ��� + �������� ∗ �����
 ≤
 �������� (4)

In our example, every costi,j will be zero via (2), except
cost5,1 which will have the correct value (via (3) and (4)).
Equations (5) and (6) define the variables cost per hour map

and cost per hour reduce and (7) enforces the restriction that
only one xmixrj should not be zero:

��	
 ��� ℎ��� ��� = ∑ ��	
$ ∗ ���� ��� �%	
�%��	$$

 (5)

��	
 ��� ℎ��� �� ��� = ∑ ��	
$ ∗ ���� �� ��� �%	
�%��	$$

 (6)
∑ �����
 = 1�,
 (7)

We are only using core instances. If the user wants to

take advantage of the lower cost of spot instances we can

trivially add the variables spot map (reduce) instancesk. The

only restriction is that spot instances must have a fixed

amount of work assigned to them (for example, 20%) to

keep the constraints linear. Also, in this case the user has to

acknowledge the risk of having instances shut down and the

job finishing later than expected. We need also to enforce

the following constraints: if we choose to run the job for a

certain amount of time (xmixrj) the capacity must be there to

finish it before the deadline. Thus, we introduce total work

per hour map and total work per hour reduce, which

represent the compute capacity for each phase.

�
�' (��) ��� ℎ��� ��� = ∑ ������
*$ ∗$

���� ��� �%	
�%��	$ (8)

Table 1. MAPREDUCE MODEL VARIABLES

Name Description Source

costi,j
Float, cost of running the job for i map
hours and j reduce hours

Solution

cost per hour
map, cost per
hour reduce

Floats, hourly job cost during the map
and reduce phases

Solution

costk Float, hourly cost for instance type k. Input

core map (reduce)
instancesk

Integer, number instances of type k to
run during the map (reduce) phase

Solution

xm-xr/
0-1 variable, 1 if job runs for i billable
map hours and j reduce hours

Solution

total work per
hour map
(reduce)

Float, work done per hour of map
(reduce) computation

Solution

capacityk
Float, work done by instance type k per
hour

Input

xmi (xrj)
0-1 variable, 1 if job runs for i (j)
billable hours during the map (reduce)

Solution

xml (xrm)
0-1 variable, 1 if job runs for l (m)
hours during the map (reduce) where l
(m) belongs to {0, 0.25, 0.5, …, i (j)}

Solution

MAP WORK,
REDUCE WORK

Float, amount of work to be done in
each phase

Input

JOB TIME
LIMIT

Float, time in hours by which the job
should be expected to finish

Input

4

�
�' (��) ��� ℎ��� �� ��� = ∑ ������
*$ ∗$

���� �� ��� �%	
�%��	$ (9)

If we choose to run the map phase for five hours that

means that 5 * total work per hour map must have enough

capacity to finish the required work (MAP WORK and

REDUCE WORK is the input data from the user). Thus we

add the following i + j constraints:

� ∗
�
�' (��) ��� ℎ��� ��� ≥ ��0 1�23 ∗ ��� (10)
� ∗
�
�' (��) ��� ℎ��� �� ��� ≥ 2�456� 1�23 ∗ ��

 (11)
Here we have introduced another 0-1 integer variables

xmi and xrj. If xmixrj equals 1, then xmi and xrj are 1;
otherwise they equal 0. These equations will give us the
minimum cost for the job; however we cannot be sure about
the job duration because these variables represent billable
hours of computation. If a computation takes 2.5 hours for
map and 0.25 hours for reduce there are 3 billable hours for
map and 1 for reduce. The job duration is not 4 hours
though, but 2.75. In order to increase the accuracy up to the
quarter of hour we introduce new 0-1 variables xml and xrm

similar to the ones defined before:

' ∗
�
�' (��) ��� ℎ��� ��� ≥ ��0 1�23 ∗
��7 (ℎ��� ' ∈ { 0.25, 0.5, … , �, �. 25, �. 50, �. 75} (12)

� ∗
�
�' (��) ��� ℎ��� �� ��� ≥ 2�456� 1�23 ∗
��7 (ℎ��� � ∈ { 0.25, 0.5, … , �, �. 25, �. 50, �. 75} (13)

These new variables allow us to introduce the deadline

constraint:
∑ ' ∗ ��77 + ∑ � ∗ ��AA ≤ B�C D��� E���D (14)

Finally we must take into account that of the x variables

in each category to be 1 (and the rest 0), the relationship

between xmixrj , xmi and xrj ; and the maximum amount of

instances running at the same time (Amazon’s restriction):
∑ ��� = 1� , ∑ ��
 = 1
 , ∑ ��7 7 = 1, ∑ ��AA = 1 (15)

0.5 ∗ ��� + 0.5 ∗ ��
 ≥ �����
 (16)
∑ ���� ��� �%	
�%��	� ≤ 20� , ∑ ���� �� ��� �%	
�%��	

 ≤

20 (17)

B. Use Case

Here we present an example of the results produced by
our algorithm. We schedule a MapReduce job whose map
phase requires 1,000 hours of work (running on Amazon's
Small instance, single core). The reduce phase requires 50
hours of work (taking also the Small instance as the
reference). One of the requirements is that we have data on
how long it takes to run on different instance types, for
example an Extra large with 8 compute units will be able to
process 8 times more work than a Small instance. We
compare our approach (ILP Solver) with the naive strategy
of selecting a number and type of instances and running
them till job completion. Our results are shown in Figure 1.

Each data point represents a scheduling plan that results
in a certain amount of money spent and an estimated job
execution time. The naive strategies here start a fixed
number of instances of different types. For example, the
data points in the naive 10 instances strategy will be: use 10
Small instances, use 10 Large Instances, use 10 Extra Large
instance, etc. Using 10 High CPU Extra Large instances
results in a running time of 5.25 hours and a cost of $7.2,
this is the point (7.2, 5.25) in the graph. For the ILP Solver
strategy we give the algorithm a deadline, for example 3
hours, and it returns a scheduling plan (2 High CPU
Medium instances and 17 High CPU Extra-large instances
for 3 hours for the map and reduce phases) and a cost ($6.3).
If the deadline is not possible to meet then the ILP solver
will detect this situation and notify the user. As we can see
in this graph, the ability of stopping instances when they are
not needed and sizing them properly for the amount of work
to be done can greatly reduce the cost and/or the execution
time. ILP Solver can complete the job in 45 minutes at a
cost of $9.62; the naïve strategies’ solutions go up to 21x
slower and up to 2.6x more expensive and often they are
both. The ILP solver data points in the graph show the shape
of a Pareto frontier.

Fig. 1. Job cost and execution time for different MapReduce schedulings. Naïve estrategies start n instances of a type (different points in the graph
represent a different instance type choice). ILP Solver selects a variable number of instances (and types) for the map and reduce phases.

0

5

10

15

20

25

5 10 15 20 25

Jo
b

 E
x

e
c
u

t
io

n
 T

im
e

 i
n

 H
o

u
r
s

Job Cost in Dollars

ILP Solver Naïve 20 instances

Naïve 10 instances Naïve 5 instances

Naïve 8 instances

5

V. MONTE CARLO SIMULATIONS IN HYBRID CLOUDS
In this section we present our scheduling algorithm for

large-scale Monte Carlos in Hybrid Clouds, specifically our
application to perform Watershed model calibration. In
essence, the user uploads a watershed model through the
Web interface and introduces the parameters for the search.
The goal is to calibrate the model by comparing its
simulation-based outputs to the actual measurements. Once
the job is submitted, the node in charge of the execution
distributes the data to the worker nodes and starts 1,000
tasks. Each task analyzes a subset of the search space, which
is partitioned in such a way that we can predict each task’s
duration. Once all the tasks are finished the best result (that
is, the one that is closest to reality) is returned to the user.
The worker nodes can be located in the local Windows HPC
Cluster or in Windows Azure (Chicago datacenter).

A. Problem Formulation

Similar to the problem model in MapReduce, we aim to
minimize the cost of the Monte Carlos while trying to finish
the job execution before a deadline (a reference of all
variables and constants used can be found in Table 2). Our
objective function will be simply:

���: ��	
 (18)

In order to formulate the problem we need to define a

series of time intervals. For example, we can use 10 minutes
as the duration of our time intervals; if a job needs to finish
in less than 1 hour and a half then we will consider 9 time
intervals. We should highlight that we are using intervals of
equal duration for simplicity; nothing in our model
precludes us from using an arbitrary division of time. For
each time interval we can then calculate the amount of work
that can be done by the different available machines. Thus,
we introduce the following variables, xi,j and worki,j:

������
*�,
 ∗ �� ,
 ≥ (��)� ,
 (19)

F�� �G��* �, �: ��,
 ≤ �H��E�C�E�D�
 (20)

xi,j is a positive integer that represents the number of
instances of type j that are active in interval i. worki,j is the
amount of tasks that can be processed by all the instances of
type j in the same interval. The first intervals will be an
special case since we need to take into account the time it
takes to boot a virtual machine in Windows Azure (or the
waiting time for a local core) and the time it takes to transfer
the model data. Thus, the first (or firsts if one interval is not
enough to initialize a worker) capacityi,j can be either zero
or a lower number than the regular capacity of each
instance. Equation (20) adds an upper bound for every
variable xi,j: this upper bound maybe equal to the number of
cores available (for the local cluster) or the maximum
number of concurrent instances allowed (for Windows
Azure). With all the worki,j defined, we can add the
restriction which enforces that all tasks can be processed:

∑ (��)� ,
�,
 ≥ �5�C�2 �F D�I3I (21)

Table 2. MONTE CARLO: WATERSHED MODEL VARIABLES

Name Description Source

cost Float, cost of running the job Solution

xi,j
Integer, number of instances of type j
running concurrently during interval i

Solution

worki,j
Float, amount of done work by all
instances of type j during interval i

Solution

billingh,j
Integer, number of billable instances
of type j running during hour h

Solution

hourlyCostj
Float, cost in dollars of running an
instance of type j for an hour

Input

minuteCostj
Float, cost in dollars of running an
instance of type j for a minute

Input

capacityi,j
Float, work done by instance type j
during interval i

Input

NUMBER OF
TASKS

Integer, work to be done (1,000 by
default in watershed)

Input

AVAILABILITYj
Integer, maximum number of
concurrent instances of type j

Input

The next step for us is to add a restriction that makes the

series over time of the number of instances of a certain time
monotonically decreasing. Basically, if at some point during
the computation we are going to need 20 small instances in
Windows Azure, start them at the beginning. Thus, if the
user sets a deadline of 2 hours but the job could be done in
an hour and a half (at the same cost), then these linear
constraints will make sure that our ILP solver finds the
fastest solution:

F�� ���ℎ �%	
�%��
*�� �, �%
��G�' �: �� ,
 ≥ ��JK,
 (22)
It is time now for us to define the cost variable. First we

will introduce the formulation that takes into account the
current hourly billing model in Windows Azure. In order to
do so, we introduce new variables billingh,j. For every hour
of the computation we get billed the maximum number of
active instances at any time during the hour. So, we add the
following constraints for every machine type j:

F�� �G��* �%
��G�' � �% ℎ��� ℎ: L�''�%MN,
 ≥ ��,
 (23)

Then, the cost is simply the weighted sum of all billing

variables:
∑ ℎ���'*6�	

 ∗ L�''�%MN,
N,
 = ��	
 (24)

An alternative formulation may be useful for certain
contexts in which billing by the minute is more appropriate.
For example, multiple scientists share the same application
and residual capacity from other job runs can be used for the
current job submission. In this case, the staff in charge of
managing the application may choose to bill users by the
minute (and maybe include the amortized cost of the wasted
capacity). Or it can be the case that each application run lasts
for several hours or even days and the wasted cost of the last
hour of computation is negligible. In this case, we can skip

6

(23) and (24) from our problem formulation and directly
define cost using the variables xi,j:

∑ �%
��G�' '�%M
ℎ� ∗ ��%�
�6�	

 ∗ ��,
 = ��	
�,
 (25)
In the presentation of our problem formulation we have

introduced the definition of intervals instead or allowing an
arbitrary amount of time. This is because in order to
calculate the cost of running the application we need to
multiply the number of instances by the time they are active.
If both the number of instances and running time are
unknowns this will produce a non linear constraint that
cannot be processed by our solver. So, if we divide the time
into intervals (it does not matter if they are equal in size) we
can calculate the interval cost and capacity before
generating the problem. Therefore, interval cost and
capacity are constants and the model can be expressed
linearly. There are a couple of disadvantages, though. The
first one is that if a user asks for a 73 minute deadline our
application will process it as a 70 minute deadline. We feel
that in our application this is not an issue, and we can
always increase the number of intervals to get a 5 minute
resolution (or better). The second disadvantage is that the
size of the problem increases linearly with the application's
running time. We are not concerned about this since it is
always possible to define intervals to be one hour or more,
get the solution and finally refine the result. For example, an
application that has a deadline of 34 hours could be
processed with 2 hours intervals. If the resulting scheduling
plan takes 30 hours we can a) use this result if it's accurate
enough b) rerun the problem by introducing a big 24 hour
interval at the beginning and then 30 minute (or less)
increment intervals. For our watershed application,
however, we have found that 10 minute intervals work well.

The solution to our problem will give us the number of
active instances of each type that will be active at each
interval (xi,j), the number of tasks that can be processed
during each interval by each set of machine types (worki,j),
the cost (cost) and execution time (max interval for which
any xi,j is greater than zero).

B. NP Hardness

Here we outline a proof of the NP hardness of the
problem model just introduced. Thus, we can show that an
optimal solution can only be obtained by using an
exponential algorithm; although, as we have argued
previously, the typical problem size that we encounter can
be solved successfully within milliseconds by lpsolve. Other
strategies, such as the naive and incremental ones that will
be introduced with our simulation and experimental results,
could approximate or even equal the optimal solutions in
some cases, but not in all of them (since they are polynomial
time algorithms).

The basic idea is to perform an efficient reduction from
the bounded knapsack problem to our problem formulation
(the minute billing version). Thus, the input to the reduction
algorithm is the n items, the maximum weight W, the value
of each item vj, the availability of each item cj, and the
weight of each item wj. The transformation is simple, the
number (and length) of intervals is always 1, the NUMBER
OF TASKS is -W, the AVAILABILITY0,j are the cj, the

minuteCostj are -vj, and the capacityj are the -wj. This
reduction is trivially done in polynomial time.

The solution to our billing problem is the x0,j; that is the
number of instances of each type running during the only
interval. Each x0,j corresponds to the number of items of
each type that will be in the knapsack, xj. Each x0,j will obey
the bounded knapsack problems restrictions since x0,j ≤
AVAILABILITY0,j implies xj ≤ cj. The capacity restriction is
also taken into account since if we combine equations (19)
and (21) we have:

∑ ������
*
 ∗ �O,

 ≥ �5�C�2 �F D�I3I →
 ∑ (
 ∗ �

 ≤ 1 (26)

since in the reduction we have effectively multiplied by -
1 the equation by assigning -W and -wj to NUMBER OF
TASKS and capacityj. Finally, the solution to the scheduling
problem (combining equations (18) and (25)) has to
correspond to the solution to the knapsack problem; we can
arrive to this conclusion simply by substituting the variables
assigned during the reduction:

���: ∑ �%
��G�' '�%Mℎ
� ∗ ��%�
�6�	

 ∗ ��,
�,
 →
���: ∑ 1 ∗ Q−G
R ∗ �O,

 → ���: ∑ G
 ∗ �

 (27)

Thus, it holds that in order a solver for our scheduling
problem formulation (minute billing) will also solve the
bounded knapsack problem (Bounded Knapsack ≤P
Scheduling), proving its NP hardness. From this point it is
easy to see a further reduction to the hourly billing version
from the minute billing version of the problem in which we
divide the capacity and cost arrays by 60 to convert hours
into minutes and then adjust the number of intervals
accordingly. We do not want to imply that there are no good
polynomial-time algorithms for schedulers to implement.
Indeed, as we will see in the next sections algorithms that
are not naive and take into account the same information
available to our ILP solver can do well under certain
circumstances. Our argument is that, given that an optimal
algorithm which is O(2n) in theory but it is fast in practice
for the size of problems we are interested in solving, this
algorithm should be the preferred choice.

C. Use Case with Hourly Billing

We present the results of our approach with the hourly
billing model in Figure 2. For this use case the watershed
model calibration requires running 1,000 tasks, where each
task takes 90 seconds to run on a single core and the input
data size is 1 GB. We compare our approach with two
different strategies, naïve and incremental. The naïve
approach is simple: the scientist selects the number of
instances to run for the complete duration of the job, for
example, 20 instances. The scheduler selects all the
available local nodes and if that’s not enough it starts
several instances in Windows Azure to reach that number.
In our example we always use 16 local cores and start
anywhere from 0 to 44 small instances in Windows Azure.
The dotted-square line in the graph plots the duration of
each job against its cost (local instances are considered
free). This line makes a Z type curve around the 1 hour
limit; even if we select other instance types we observe the
same phenomena. The cause of this shape is the billing
model in Windows Azure, where the user pays by the hour,

7

regardless of where she uses 1 or 59 minutes of time. A job
that with the help of 20 small instances lasts for 63 minutes
costs $4.8 since we are paying for 40 compute hours.
However, had the user selected 24 small instances the job
would have finished in just under one hour and the bill
would have been $2.88 (24 billable compute hours). Thus,
we can see here the two main problems with the naïve
approach: the user interface and the suboptimal choices. The
user interface asks the user for the number of instances but
that is not a metric important to her; the metrics the scientist
cares about are cost and execution time. There is no way for
the user to relate cost and time to number of instances unless
she has previous experiences with the system. The other
problem is that we can clearly see the suboptimal choices
that are made because of the hourly billing model in cloud
computing. The worst case scenario for the naïve strategy is
at the 61 minutes mark, where it costs $5.28 to run the job,
compared to the $2.76 cost using our strategy.

We introduce another approach, Incremental, and
compare both of them to our ILP solver. The incremental
approach uses benchmarking information to predict the cost
and execution time of each job given a set of instances of
different types. If we have information about how long each
task usually takes on each type of instances, the time it takes
to initialize a node and stage in the data then we can
calculate the cost and time of each job before it is submitted
with a certain configuration. This is the same type of
information available to our ILP solver. For this approach
the input from the user is the expected execution time. The
incremental algorithm starts with the local machines as the
starting configuration and calculates cost/time. Then it
incrementally adds instances from Windows Azure (mixing
different types) up to a limit, and returns the best solution.
The best solution is the cheapest one whose completion time

is below the user’s limit. We can see this approach as
simulating every possible naïve strategy and selecting the
best one. This way we can avoid the two main problems of
the naïve strategy: the interface is now presented in terms of
what the user cares about, cost and time; and there are no
choices which are clearly wrong (more expensive and
slower than other possible configurations). In the graph the
dotted-circle line represents this strategy.

Even though the choices for the incremental algorithm
are good, we can do better. Remember that in both naïve
and incremental we select some instances and run them till
job completion time. It is possible to stop some instances
before the job completion time to avoid being billed an
additional hour. For example, we can start 18 small
instances in Windows Azure for one hour and use the 16
local cores for the whole job. This way the job can be
completed in 70 minutes and it will cost $2.16. A
comparable data point for the incremental algorithm is 78
minutes and $2.16; that is, 11.4% slower for the same
amount of money. Our strategy (ILP solver) is represented
by the solid black line.

As we can see in the graph, both Incremental and ILP
lines get much closer when the job duration is less than one
hour. This is expected, since the main advantage for the ILP
strategy (stopping instances at hour intervals to avoid
incurring charges because of partial hours) is lost. However,
we still consider it to be the best mechanism since it gives
the best solution in all instances. Incremental may get close
to the best solution for jobs under one hour, but these jobs
may not be that common in practice since they are twice or
thrice more expensive to run in exchange for a 25% or 33%
(15 or 20 minutes) decrease in job execution time.

D. Multiple Watershed Models

In our last use case the computational job is divided into

1,000 tasks, where the only difference between tasks is

some input parameters (each tasks runs the same watershed

model). In this section we present the modifications to our

model in order to support a more complex scenario:
• The job is composed by k different models where each

model is composed by NUMBER_OF_TASKSk tasks.
The execution time varies for each model; all tasks of
one model last the same amount of time.

• The input data may be stored locally, in Windows
Azure or in both.

The objective function is the same one as in the last use

case, equation (18). In order to account now for the different

watershed models we have to modify existing variables.

Basically we add need the k suffix in order to account for

the k different models. The new variables worki,j,k and xi,j,k

are defined in:
������
*�,
,$ ∗ ��,
,$ ≥ (��)�,
,$ (28)

∀ �, �: ∑ ��,
,$$ ≤ �H��E�C�E�D�
 (29)

Fig. 2. Job cost and execution time for different Watershed
schedulings. Naïve estrategies use 16 local cores and additional
instances of a given type in Windows Azure. ILP Solver selects a
variable number of instances (and types) over time.

40

50

60

70

80

90

100

110

120

0 2 4

Jo
b

 e
x

e
c
u

t
io

n
 t

im
e

 i
n

 m
in

u
t
e

s

Job Cost in dollars

ILP Solver

 Naive Small

Incremental

8

The following constraint enforces that the number of
machines (local or in Windows Azure) used for this job
decreases monotonically. Thus, if we need to ask for 16
local cores at some point during the job execution, do it at
the beginning:

F��	����	�%	
�%��	
*��	�, �%
��G�'	�:	
∑ ��,
,$$! ∑ ��,
,$$ (30)

In our last use case we knew that at the start of every job
every machine that was participating will be staging in the
necessary data. Here we do not have that advantage since a
machine could be processing job 1 for the first half an hour
and then switch to job 2. Thus, the initialization can happen
at any time and we cannot zero out (or decrease) the
capacityi,j,K constants, which is what we did before. Instead
we add the initialization time as negative work done; this is
used in every machine so we have to multiply this quantity
by the maximum number of machines that participate
processing watershed model k:

F��	����	�%	
�%��	
*��	�,(�
��	�� 	�� �'):	
∑ (��)�,
,$ � 	�%�
0�%�'
* ∗	���	�����%�	
,$� !

�
�'_(��)
,$ (31)
F��	����	�%
��G�'	�, �%	
�%��	
*���,(�
��	�� 	�� �'):

���	�����%�	
,$! ��,
,$ (32)

We also need to add a constraint to make sure that all

tasks for each watershed model are completed:
∀):	 ∑
�
�'	(��)
,$
 # �5�C�2	�F	D�I3I$ (33)

Finally, we define the new cost variable. In this case it
will be composed by the compute costs and possibly data
transfer costs. In order to define the transfer costs we need
to introduce new binary variables, transferk,l,m, which are
one in case we run a watershed model in a location where
the input data needs to be transferred. For example, running
a model locally but the input data is located only on
Windows Azure. The definition of these new variables is:

F��	����	�%	
�%��	
*��	�, (�
��	�� 	�� �'):	
∑ ��,
,$ � ���	D�I3I ∗	
$,7,A� (34)

��%	U��	��	
	 # 	∑ �%��
	 �
�		�V�) ∗ W��	
XC��
' "),',�

��	
XC�%�Y ∗	
),',� (35)
	�����
�	��	
	 # 	∑ �%
��G�'	'�%M
�� ∗ ��%�
�6�	

 ∗�,
,$

	��,
,$ (36)

	��	
 #
��%	U��	��	
	 " �����
�	��	
	 (37)
We compare our approach with a data co-location

strategy. In this case we are submitting for execution 5
different watershed models, each one composed of 200 tasks
(1,000 tasks total for calibration). The execution time varies
from 1 minute to 7.5 minutes (all tasks of one model last the
same amount of time). In scenario A the inputs for models
1, 3 and 4 are stored locally and the ones for 2, 3 and 5 are
stored in Windows Azure. In scenario B the inputs for
models 1, 2, 3 and 4 are stored locally and the ones for 3
and 5 are stored in Windows Azure. For scenario A models
2, 3 and 5 run on Windows Azure and in scenario B models
3 and 5 do. We present our experimental results on Figure 3.
In the graph each data point in the data co-location
strategy’s curve represents a job execution with a fix
number of cloud instances of the medium size (from 1 to
32). For the ILP solver, on the other hand, it represents a
configuration (the solution to the ILP problem) where the

maximum number of intervals has been set. The data co-
location strategy works well when you have the right
amount of instances on Windows Azure so that both the
local and cloud instances finish around the same time. In the
graph this is represented by the data point at the elbow. The
advantages of the ILP strategy are two-fold. First, the ILP
solver's ability to move the data and tasks around gives the
user a lot more options for balancing the cost and execution
time. Second, even in the best case data co-location for
scenario A is 5.4% more expensive than ILP solver and data
co-locations for scenario B is 18.8% more expensive (than
ILP solver).

VI. CONCLUSION
New algorithms are needed for cloud schedulers. For

both MapReduce and Monte Carlos we have proposed two
problem formulations based on ILP. Scheduling decisions
made by our strategy form a Pareto efficient frontier that are
faster or cheaper than any alternatives; in MapReduce naïve
alternatives can often be both by a margin as high as 2.6x
cheaper and 5.46x faster. For Watershed we find similar
results for naïve strategies, although existing algorithms can
still be up to 11% slower and up to 38% more expensive.

REFERENCES

[1] M. Armbrust et al., “A view of cloud computing.” Commun. ACM,

vol. 53, no. 4, pp. 50-58, Apr. 2010.

[2] R. Henderson, “Job scheduling under the Portable Batch System,” in
Job Scheduling Strategies for Parallel Processing, vol. 949, D.
Feitelson and L. Rudolph, Eds. Springer Berlin / Heidelberg, 1995,
pp. 279-294.

[3] Amazon, “Amazon Web Services,” 2015.

[4] J. Li, Q. Wang, Y. Kanemasa, D. Jayasinghe, S. Malkowski, P.
Xiong, M. Kawaba and C. Pu."Profit-Based Experimental Analysis of
IaaS Cloud Performance: Impact of Software Resource Allocation",
Services Computing (SCC), 2012 IEEE Ninth International
Conference on. IEEE, 2012.

[5] P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu and H. Hacigumus,
"ActiveSLA: A Profit-Oriented Admission Control Framework for
Database-as-a-Service Providers", In Proceedings of ACM
Symposium on Cloud Computing (SOCC'11), Oct. 2011.

Fig. 3: Scheduling cost and turnaround time for multiple
watershed models.

0

50

100

150

200

250

300

0 2 4 6 8

Jo
b

 e
x

e
c
u

t
io

n
 t

im
e

 i
n

 m
in

u
t
e

s

Job Cost in dollars

ILP Solver Scenario A

 Data Co-location

Medium Scenario A

ILP Solver Scenario B

 Data Co-location

Medium Scenario B

9

[6] P. Xiong, Z. Wang, S. Malkowski, Q. Wang, D. Jayasinghe and C.
Pu. "Economical and Robust Provisioning of N-Tier Cloud
Workloads: A Multi-level Control Approach", In Proceedings of
IEEE International Conference On Distributed Computing Systems
(ICDCS) (ICDCS'11), June 2011.

[7] I.K. Kim, J. Steele, Y. Qi, and M. Humphrey. “Comprehensive
Elastic Resource Management to Ensure Predictable Performance for
Scientific Applications on Public IaaS Clouds.” Proceedings of the
7th IEEE/ACM International Conference on Utility and Cloud
Computing (UCC 2014). Dec 2014.

[8] J. Dean and S. Ghemawat, “MapReduce: simplified data processing
on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, Jan.
2008.

[9] J. O’Loughlin & L. Gillam. Performance Evaluation for Cost-
Efficient Public Infrastructure Cloud Use.. Economics of Grids,
Clouds, Systems, and Services. Lecture Notes in Computer Science
Volume 8914, 2014, pp 133-145

[10] M. Ercan, J. Goodall, A. Castronova, M. Humphrey, and N.
Beekwilder. Calibration of SWAT models using the cloud.
Environmental Modelling & Software. 62, 188-196

[11] M. Humphrey, N. Beekwilder, J. Goodall, and M. Ercan. Calibration
of Watershed Models using Cloud Computing. Proceedings of the 8th
IEEE International Conference on eScience (eScience 2012). Oct 8-
12 2012.

[12] D. Chappell, “Introducing the Windows Azure Platform,” 2009.

[13] G. Mateescu, W. Gentzsch, and C. J. Ribbens, “Hybrid Computing—
Where HPC meets grid and Cloud Computing,” Future Generation
Computer Systems, vol. 27, no. 5, pp. 440-453, May 2011.

[14] R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente, “Elastic
management of cluster-based services in the cloud,” International
Conference on Autonomic Computing, pp. 19-24, 2009.

[15] D. Nurmi et al., “The Eucalyptus Open-Source Cloud-Computing
System,” Cluster Computing and the Grid, 2009. CCGRID'09. 9th
IEEE/ACM International Symposium on. IEEE, 2009.

[16] M. Humphrey, Z. Hill, K. Jackson, C. van Ingen, and Y. Ryu,
“Assessing the Value of Cloudbursting: A Case Study of Satellite
Image Processing on Windows Azure,” in 7th IEEE International
Conference on e-Science (escience 2011), 2011.

[17] S. Kailasam, N. Gnanasambandam, J. Dharanipragada, and N.
Sharma, Optimizing Service Level Agreements for Autonomic Cloud
Bursting Schedulers. IEEE, 2010, pp. 285-294.

[18] T. Bicer, D. Chiu, and G. Agrawal, “A Framework for Data-Intensive
Computing with Cloud Bursting,” in 2011 IEEE International
Conference on Cluster Computing, 2011, pp. 169-177.

[19] A. Ruiz-Alvarez and M. Humphrey, “A Model and Decision
Procedure for Data Storage in Cloud Computing,” in The 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, 2012.

[20] A. Ruiz-Alvarez and M. Humphrey. “An Automated Approach to
Cloud Storage Service Selection.” Proceedings of the 2nd Workshop
on Scientific Cloud Computing (ScienceCloud 2011). June 8, 2011

[21] L. Zhang and S. Malik, “The Quest for Efficient Boolean
Satisfiability Solvers ,” Computer Aided Verification, vol. 2404, pp.
641-653, Sep. 2002.

[22] M. Berkelaar, K. Eikland, and P. Notebaert, “lpsolve: Open source
(mixed-integer) linear programming system,” 2011. [Online].
Available: http://lpsolve.sourceforge.net/.

[23] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, 2010, pp. 1-10.

