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Abstract—Given the variety of resources available in public 

clouds and locally (hybrid clouds), it can be very difficult to 

determine the best number and type of resources to allocate 

(and where) for a given activity. In order to solve this problem 

we first define the requested computation in terms of an 

Integer Linear Programming (ILP) problem and then use an 

efficient ILP solver to make a provisioning decision in a few 

milliseconds. Our approach is based on the two most 

important metrics for the user: cost and job execution time. 

Thus, based on the user’s preferences we can favor solutions 

that optimize speed or cost or a certain combination of both 

(e.g. cheapest solution that meets a certain deadline). We 

evaluate our approach with two classes of cloud applications: 

MapReduce applications, and Monte Carlo simulations. A 

significant advantage in our approach is that our solution has 

been proved optimal by the ILP solver; the set of the 

scheduling decisions based on our model are plotted on a time 

vs. cost graph that forms a Pareto efficient frontier. This way, 

we can avoid the pitfalls of a naïve strategy that can lead to a 

great increase in cost (91%) or job running time (21%) 

compared to optimal.  

Keywords-cloud computing; ILP; resource provisioning 

I. INTRODUCTION 
Cloud computing [1] has the potential to alter the 

traditional role of the scheduler, which has been to control 
access to certain shared resources (e.g. a single CPU or a 
cluster). The scheduler assigns these resources to processes, 
threads or parallel applications in such a way that optimizes 
throughput, latency, fairness and/or other metrics. However, 
in a cloud environment, applications within a reasonable 
range of computing requirements operate under the 
abstraction that computational resources are unlimited and 
almost immediately attainable. For example, in a local 
cluster (managed by PBS [2] or another scheduler) an 
application user may generate a request of 25 machines for 
40 minutes for the scheduler and then the user will wait for 
the application to run. In cloud computing the user may 
request the application to immediately boot 25 machines in 
Amazon EC2 [3] and run the application for as long as it 
needs to. A scheduler that simply replies to requests 
composed by a number of machines and the job’s execution 
time seems trivial to implement in cloud computing since 
there is no need to worry about (virtual) resource sharing. In 
this research we ask the following questions: Is this 
interface the correct one for cloud computing applications? 

Should a scheduler optimize some metric instead of blindly 
processing a request? 

We believe that there are new requirements for resource 
managers for certain cloud applications (e.g.[4][5][6],[7]). 
Thus, we are not looking for a general scheduler, but for a 
scheduler that takes advantage of the characteristics of a 
specific class of applications to produce a scheduling plan 
that is more cost-effective and/or faster. The first class of 
applications that we consider in this paper is MapReduce [8] 
jobs. (Note that we are not researching where to place a 
MapReduce job within a given MapReduce cluster). The 
second one is simulations whose running time can be 
estimated (similar also to Monte Carlo algorithms). For 
each, we generate an Integer Linear Programming (ILP) 
problem based on the information from the cloud providers, 
the local resources and the application. The solution to this 
ILP problem will be the optimal assignment of compute 
resources based on cost or execution time. 

To make an optimal scheduling decision for a 
MapReduce job we need to know: the amount of work to be 
done [9], the processing capacity of each instance (and its 
cost) and a constraint on the job’s execution time (provided 
by the user at submission time). The output of our algorithm 
will be the amount and type of instances to use during the 
map, the same during the reduce phase, and an estimation of 
the cost and duration. For example, the output could be 
“Start 2 High CPU Medium instances and 17 High CPU 
Extra-large instances and run for 3 hours at a cost of $6.30”. 
As we will show in the next sections, the scheduling 
decisions made by this strategy form a Pareto efficient 
frontier that are faster or cheaper than any alternatives (and 
often both by a margin as high as 2.6x cheaper and 5.46x 
faster for naïve strategies). 

Our second application class is large-scale Monte Carlos 
in hybrid clouds. Our representative case of this class is our 
Watershed model calibration system [10][11], which 
attempts to calibrate a watershed model by comparing the 
simulation results to actual observations. Each job starts 
1,000 different tasks that can be assigned to a local 
Windows HPC cluster or to instances in Microsoft Azure 
[12]. Using the same information that we gather for the 
MapReduce we present our ILP solver with a similar 
problem; the solutions are also optimal and form a Pareto 
frontier. We compare our approach with both naïve and 
incremental strategies. Our approach avoids the potential 
pitfalls of naïve scheduling where the cost can be as high as 
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91% more. The incremental strategy uses the same 
information as our ILP solver but it still can be up to 11% 
slower or 38% more expensive.  

A variation to this scheduling algorithm is the possible 
replication of the input datasets. Our final evaluation is a 
watershed model calibration with 5 different models, whose 
input data may be stored in Microsoft Azure, in the local 
cluster or in both. We generalize our previous definition to 
support different tasks and data location. We compare our 
strategy with a data co-location algorithm (which starts the 
computation where the data is). Our approach is superior to 
data co-location even in data co-location’s best case (from 
5.4% to 18.8% more expensive for the same running time). 

In summary, the contributions of this paper are: 
• We introduce two ILP problem formulations whose 

solutions provide optimal scheduling decisions for two 
classes of cloud applications. 

• We show that a MapReduce job using our algorithm can 
be completed faster and cheaper that a naïve strategy, 
often significantly (2.6x cheaper and 5.5x faster). 

• We show that a Monte Carlo job in a hybrid cloud using 
our algorithm is provided optimal scheduling solutions 
that are more cost effective than other advanced 
strategies (up to 11% slower and 38% more expensive 
for incremental), even comparing it to the other’s best 
case scenario (data co-location is 5.4% to 18.8% more 
expensive). 

The rest of the paper is organized as follows: we review 
related work in Section II. We introduce the ILP problem 
formulation strategies and solver in Section III. The 
MapReduce use case is presented in Section IV. We present 
the results of our research with Monte Carlo simulations in 
hybrid clouds in Section V before concluding with Section 
VI. 

II. RELATED WORK 
Hybrid clouds and “cloudbursting” are logical 

extensions of the already existing local resources, 
augmented with the capabilities of the cloud. This type of 
hybrid computing [13] has been examined as a potential 
solution for taking advantage of the scalability benefits of 
the cloud while keeping the performance benefits of the 
local cluster. These Elastic Clusters are based on software 
such as OpenNebula [14], Eucalyptus [15] or in application 
specific middleware [16] (Windows HPC and Windows 
Azure integration). Interesting algorithms for a cloud 
bursting scheduler have also been suggested [17]; our 
approach differs in that we do not consider a job queue but 
rather make a decision on each job as they come and we are 
focusing on application specific jobs rather than on a 
general scheduler (albeit the information required by both 
approaches is similar). This last approach from S. Kailasam 
et al. also focuses on data intensive computing, similar to 
the approach taken by T. Bicer et al. [18] where they 
suggest middleware to expand the resources available to 
MapReduce jobs while taking into account the transfer of 
data for data intensive jobs. In our present work we focus 
more on the one datacenter approach for MapReduce and 
the choices related to the computational resources, thus we 

do not take into account data storage. In our second use 
case, Watershed, we have not seen watershed models (the 
input data) of more than a few megabytes; even if the 
models grow up to 1 GB (which we account for in our 
work) the computational costs are going to exceed data 
storage costs by a wide margin. We believe that the data 
allocation should be planned in advance [19]; however it 
could be possible to in the future extend our approach to 
account for multiple datacenters and possible data transfers. 

We have also mentioned that our approach uses ILP 
solvers; this work is based upon and could not have been 
possible without the improvements made on the efficiency 
of Boolean satisfiability [21] and ILP solvers [22]. 

III. ILP SOLVER 
The core of our approach is to generate an Integer Linear 

Programming (ILP) problem based on the input data and 
whose solution is the scheduling decision (number and type 
of instances at job start time and over time). We need to use 
an integer linear programming model since the number of 
instances that are used at any given time needs to be an 
integer number. The main advantage to this approach is that 
the ILP solver will return an optimal solution; thus no other 
approach can be better (at most is equal), given the problem 
model. The two potential issues with this approach are the 
validity of the problem model and the running time. In the 
next sections we will present the problem model for each 
MapReduce and Watershed. 

Based on our previous experience we do not consider the 
running time of the ILP solver to be an issue. Even though 
the problem is NP hard, recent solvers are remarkably 
efficient for problems that are small enough. In previous 
research [19] [20] we used an ILP approach to provide a 
data management algorithm for cloud storage. In this paper 
we found that a problem can be solved under a second if we 
have less than 2,000 variables; in our model that would be 
equivalent to managing storage data for an application with 
3 different datasets where there are 48 different valid 
storage systems for each dataset. As we will present in the 
following sections, problem sizes for our scheduler are 
smaller than this: the number of variables for Watershed are 
O(n*m), where n is the number of machine types (5 for each 
Windows Azure datacenter that we consider) and m is the 
number of time intervals (12 for the examples presented in 
this paper). The constant factors behind the O notation are 
also small (lesser than 2). The average time the scheduler 
spends in the solver phase for Watershed is 9 milliseconds. 
Thus, we believe that this approach will remain viable even 
if we scale up the number of datacenters or machine types. 

Our scheduler was written in C# with the solver interface 
being the Microsoft Solver Foundation and the actual solver 
used is lpsolve [22]. The results based on simulation were 
run in a desktop machine (Dual Core 2.40 GHz, 2 GB of 
RAM). The experimental results with Watershed were run on 
Windows Azure in the Chicago datacenter and our local 
Windows HPC cluster with 16 cores. 

IV. MAPREDUCE 
MapReduce is a popular framework for data parallel 

applications with an open source implementation, Hadoop 
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[23]. The Amazon cloud offers running Hadoop jobs as a 
service, which is called Elastic MapReduce (EMR). A user 
is able to go to the website, select the type and number of 
instances to run, select the input and output data, and start 
the job execution. Amazon also offers a programmatic 
interface that on top of the job configuration and starting 
commands includes others such as resizing the number of 
instances being used.  

To provide an optimal decision, we need an estimation 
of the time it takes to process the map and reduce phases on 
different machines. This estimation comes from 
benchmarking the application on different instance types. 
Since the MapReduce jobs are data parallel it should be 
possible to obtain a good estimation of the running time of 
an application by executing a subset of it. Aside from this 
benchmarking information we need a deadline from the 
user; our solution will find the cheapest way to run the job 
and meet the deadline. 

A. Problem Formulation 

We model a MapReduce job as a set of instances of 
possibly different types during the map phase and another 
set of instances for the reduce phase. We find a glossary of 
all the variables used in the following equations and their 
type in Table 1. In order to find the cheapest solution for the 
user we generate an ILP problem in which the objective 
functions is the cost of the job: 

���: ∑ ��	
�,
 �,
  (1) 

Here, each variable costi,j has two possible values: 0 or 
the cost of running the job using i hours for the map phase 
and j hours for the reduce phase. Therefore, all the costi,j will 
have a value of 0, except the one with the minimum cost, 
which corresponds to the solution of our problem. Each 
costi,j is related to the variables xmixrj, which are 0-1 integer 
variables. Only one variable will be equal to one, and that 
variable corresponds to the number of hours for the map (i) 
and reduce (j) phases in the solution. For example, if the 
duration is 5 billable hours for the map time and 1 billable 
hour for the reduce time then xm5xr1 will be one. Thus, we 
would like to define each costi,j as the actual cost multiplied 
by the corresponding xmixrj. This, however, will lead to a 
non-integer constraint, so we convert the problem by 
introducing three different constraints instead of one non 
linear: costi,j = (i * cost per hour map + j * cost per hour 
reduce) * xmixrj. We accomplish this by using a 
MAXMONEY constant (an amount of money that cannot be 
spent by the job) and the following (2), (3) and (4): 

��	
�,
 ≤ �������� ∗  �����
   (2) 

��	
�,
 −  � ∗ ��	
 ��� ℎ��� ��� − � ∗
��	
 ��� ℎ��� �� ��� − �������� ∗ �����
 ≥
 −�������� (3) 

��	
�,
 −  � ∗ ��	
 ��� ℎ��� ��� − � ∗
��	
 ��� ℎ��� �� ��� + �������� ∗ �����
 ≤
 �������� (4) 

In our example, every costi,j will be zero via (2), except 
cost5,1 which will have the correct value (via (3) and (4)). 
Equations (5) and (6) define the variables cost per hour map 

and cost per hour reduce and (7) enforces the restriction that 
only one xmixrj should not be zero: 

��	
 ��� ℎ��� ��� =  ∑ ��	
$ ∗ ���� ��� �%	
�%��	$$

 (5) 

��	
 ��� ℎ��� �� ��� =  ∑ ��	
$ ∗ ���� �� ��� �%	
�%��	$$

 (6) 
∑ �����
 = 1�,
  (7) 

We are only using core instances. If the user wants to 

take advantage of the lower cost of spot instances we can 

trivially add the variables spot map (reduce) instancesk. The 

only restriction is that spot instances must have a fixed 

amount of work assigned to them (for example, 20%) to 

keep the constraints linear. Also, in this case the user has to 

acknowledge the risk of having instances shut down and the 

job finishing later than expected. We need also to enforce 

the following constraints: if we choose to run the job for a 

certain amount of time (xmixrj) the capacity must be there to 

finish it before the deadline. Thus, we introduce total work 

per hour map and total work per hour reduce, which 

represent the compute capacity for each phase. 


�
�' (��) ��� ℎ��� ��� =  ∑ ������
*$ ∗$

���� ��� �%	
�%��	$ (8) 

Table 1.  MAPREDUCE MODEL VARIABLES 

Name Description Source 

costi,j 
Float, cost of running the job for i map 
hours and j reduce hours 

Solution 

cost per hour 
map, cost per 
hour reduce 

Floats, hourly job cost during the map 
and reduce phases 

Solution 

costk Float, hourly cost for instance type k. Input 

core map (reduce) 
instancesk 

Integer, number instances of type k to 
run during the map (reduce) phase 

Solution 

xm-xr/ 
0-1 variable, 1 if job runs for i billable 
map hours and j reduce hours 

Solution 

total work per 
hour map 
(reduce) 

Float, work done per hour of map 
(reduce) computation 

Solution 

capacityk 
Float, work done by instance type k per 
hour 

Input 

xmi  (xrj) 
0-1 variable, 1 if job runs for i (j) 
billable hours during the map (reduce) 

Solution 

xml  (xrm) 
0-1 variable, 1 if job runs for l (m) 
hours during the map (reduce) where l 
(m) belongs to {0, 0.25, 0.5, …, i (j)} 

Solution 

MAP WORK, 
REDUCE WORK 

Float, amount of work to be done in 
each phase 

Input 

JOB TIME 
LIMIT 

Float, time in hours by which the job 
should be expected to finish 

Input 
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�
�' (��) ��� ℎ��� �� ��� =  ∑ ������
*$ ∗$

���� �� ��� �%	
�%��	$ (9) 

If we choose to run the map phase for five hours that 

means that 5 * total work per hour map must have enough 

capacity to finish the required work (MAP WORK and 

REDUCE WORK is the input data from the user). Thus we 

add the following i + j constraints: 

� ∗ 
�
�' (��) ��� ℎ��� ��� ≥ ��0 1�23 ∗ ��� (10) 
� ∗ 
�
�' (��) ��� ℎ��� �� ��� ≥ 2�456� 1�23 ∗ ��


 (11) 
Here we have introduced another 0-1 integer variables 

xmi and xrj. If xmixrj equals 1, then xmi and xrj are 1; 
otherwise they equal 0. These equations will give us the 
minimum cost for the job; however we cannot be sure about 
the job duration because these variables represent billable 
hours of computation. If a computation takes 2.5 hours for 
map and 0.25 hours for reduce there are 3 billable hours for 
map and 1 for reduce. The job duration is not 4 hours 
though, but 2.75. In order to increase the accuracy up to the 
quarter of hour we introduce new 0-1 variables xml and xrm 

similar to the ones defined before: 

' ∗ 
�
�' (��) ��� ℎ��� ��� ≥ ��0 1�23 ∗
��7  (ℎ��� ' ∈ { 0.25, 0.5, … , �, �. 25, �. 50, �. 75} (12) 

� ∗ 
�
�' (��) ��� ℎ��� �� ��� ≥ 2�456� 1�23 ∗
��7  (ℎ��� � ∈ { 0.25, 0.5, … , �, �. 25, �. 50, �. 75} (13) 

These new variables allow us to introduce the deadline 

constraint: 
∑ ' ∗ ��77 + ∑ � ∗ ��AA ≤ B�C D��� E���D (14) 

Finally we must take into account that of the x variables 

in each category to be 1 (and the rest 0), the relationship 

between xmixrj , xmi and xrj ; and the maximum amount of 

instances running at the same time (Amazon’s restriction): 
∑ ��� = 1�  , ∑ ��
 = 1 
  , ∑ ��7  7 = 1, ∑ ��AA = 1 (15) 

0.5 ∗ ��� +  0.5 ∗ ��
 ≥ �����
 (16) 
∑ ���� ��� �%	
�%��	� ≤ 20� , ∑ ���� �� ��� �%	
�%��	

 ≤

20 (17) 

B. Use Case 

Here we present an example of the results produced by 
our algorithm. We schedule a MapReduce job whose map 
phase requires 1,000 hours of work (running on Amazon's 
Small instance, single core). The reduce phase requires 50 
hours of work (taking also the Small instance as the 
reference). One of the requirements is that we have data on 
how long it takes to run on different instance types, for 
example an Extra large with 8 compute units will be able to 
process 8 times more work than a Small instance. We 
compare our approach (ILP Solver) with the naive strategy 
of selecting a number and type of instances and running 
them till job completion. Our results are shown in Figure 1. 

Each data point represents a scheduling plan that results 
in a certain amount of money spent and an estimated job 
execution time. The naive strategies here start a fixed 
number of instances of different types. For example, the 
data points in the naive 10 instances strategy will be: use 10 
Small instances, use 10 Large Instances, use 10 Extra Large 
instance, etc. Using 10 High CPU Extra Large instances 
results in a running time of 5.25 hours and a cost of $7.2, 
this is the point (7.2, 5.25) in the graph.  For the ILP Solver 
strategy we give the algorithm a deadline, for example 3 
hours, and it returns a scheduling plan (2 High CPU 
Medium instances and 17 High CPU Extra-large instances 
for 3 hours for the map and reduce phases) and a cost ($6.3). 
If the deadline is not possible to meet then the ILP solver 
will detect this situation and notify the user. As we can see 
in this graph, the ability of stopping instances when they are 
not needed and sizing them properly for the amount of work 
to be done can greatly reduce the cost and/or the execution 
time. ILP Solver can complete the job in 45 minutes at a 
cost of $9.62; the naïve strategies’ solutions go up to 21x 
slower and up to 2.6x more expensive and often they are 
both. The ILP solver data points in the graph show the shape 
of a Pareto frontier. 

 

 
 

Fig. 1. Job cost and execution time for different MapReduce schedulings. Naïve estrategies start n instances of a type (different points in the graph 
represent a different instance type choice). ILP Solver selects a variable number of instances (and types) for the map and reduce phases. 
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V. MONTE CARLO SIMULATIONS IN HYBRID CLOUDS  
In this section we present our scheduling algorithm for 

large-scale Monte Carlos in Hybrid Clouds, specifically our 
application to perform Watershed model calibration. In 
essence, the user uploads a watershed model through the 
Web interface and introduces the parameters for the search. 
The goal is to calibrate the model by comparing its 
simulation-based outputs to the actual measurements. Once 
the job is submitted, the node in charge of the execution 
distributes the data to the worker nodes and starts 1,000 
tasks. Each task analyzes a subset of the search space, which 
is partitioned in such a way that we can predict each task’s 
duration. Once all the tasks are finished the best result (that 
is, the one that is closest to reality) is returned to the user. 
The worker nodes can be located in the local Windows HPC 
Cluster or in Windows Azure (Chicago datacenter). 

A. Problem Formulation 

Similar to the problem model in MapReduce, we aim to 
minimize the cost of the Monte Carlos while trying to finish 
the job execution before a deadline (a reference of all 
variables and constants used can be found in Table 2). Our 
objective function will be simply:  

 

���: ��	
 (18) 

 
In order to formulate the problem we need to define a 

series of time intervals. For example, we can use 10 minutes 
as the duration of our time intervals; if a job needs to finish 
in less than 1 hour and a half then we will consider 9 time 
intervals. We should highlight that we are using intervals of 
equal duration for simplicity; nothing in our model 
precludes us from using an arbitrary division of time. For 
each time interval we can then calculate the amount of work 
that can be done by the different available machines. Thus, 
we introduce the following variables, xi,j and worki,j: 

 
������
*�,
 ∗ �� ,
 ≥ (��)� ,
  (19) 

F�� �G��* �, �: ��,
 ≤ �H��E�C�E�D�
 (20) 
 

xi,j is a positive integer that represents the number of 
instances of type j that are active in interval i. worki,j is the 
amount of tasks that can be processed by all the instances of 
type j in the same interval. The first intervals will be an 
special case since we need to take into account the time it 
takes to boot a virtual machine in Windows Azure (or the 
waiting time for a local core) and the time it takes to transfer 
the model data. Thus, the first (or firsts if one interval is not 
enough to initialize a worker) capacityi,j can be either zero 
or a lower number than the regular capacity of each 
instance. Equation (20) adds an upper bound for every 
variable xi,j: this upper bound maybe equal to the number of 
cores available (for the local cluster) or the maximum 
number of concurrent instances allowed (for Windows 
Azure). With all the worki,j defined, we can add the 
restriction which enforces that all tasks can be processed: 

∑ (��)� ,
�,
 ≥ �5�C�2 �F D�I3I (21) 
 

Table 2.  MONTE CARLO: WATERSHED MODEL VARIABLES 

Name Description Source 

cost Float, cost of running the job  Solution 

xi,j 
Integer, number of instances of type j 
running concurrently during interval i 

Solution 

worki,j 
Float, amount of done work by all 
instances of type j during interval i 

Solution 

billingh,j 
Integer, number of billable instances 
of type j running during hour h 

Solution 

hourlyCostj 
Float, cost in dollars of running an 
instance of type j for an hour 

Input 

minuteCostj 
Float, cost in dollars of running an 
instance of type j for a minute 

Input 

capacityi,j 
Float, work done by instance type j 
during interval i 

Input 

NUMBER OF 
TASKS 

Integer, work to be done (1,000 by 
default in watershed) 

Input 

AVAILABILITYj 
Integer, maximum number of 
concurrent instances of type j 

Input 

 
The next step for us is to add a restriction that makes the 

series over time of the number of instances of a certain time 
monotonically decreasing. Basically, if at some point during 
the computation we are going to need 20 small instances in 
Windows Azure, start them at the beginning. Thus, if the 
user sets a deadline of 2 hours but the job could be done in 
an hour and a half (at the same cost), then these linear 
constraints will make sure that our ILP solver finds the 
fastest solution: 

F�� ���ℎ �%	
�%�� 
*�� �, �%
��G�' �: �� ,
 ≥ ��JK,
 (22) 
It is time now for us to define the cost variable. First we 

will introduce the formulation that takes into account the 
current hourly billing model in Windows Azure. In order to 
do so, we introduce new variables billingh,j. For every hour 
of the computation we get billed the maximum number of 
active instances at any time during the hour. So, we add the 
following constraints for every machine type j: 

F�� �G��* �%
��G�' � �% ℎ��� ℎ: L�''�%MN,
 ≥ ��,
 (23) 

Then, the cost is simply the weighted sum of all billing 

variables: 
∑ ℎ���'*6�	

 ∗ L�''�%MN,
N,
 = ��	
 (24) 

An alternative formulation may be useful for certain 
contexts in which billing by the minute is more appropriate. 
For example, multiple scientists share the same application 
and residual capacity from other job runs can be used for the 
current job submission. In this case, the staff in charge of 
managing the application may choose to bill users by the 
minute (and maybe include the amortized cost of the wasted 
capacity). Or it can be the case that each application run lasts 
for several hours or even days and the wasted cost of the last 
hour of computation is negligible. In this case, we can skip 
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(23) and (24) from our problem formulation and directly 
define cost using the variables xi,j: 

∑ �%
��G�' '�%M
ℎ� ∗ ��%�
�6�	

 ∗ ��,
 = ��	
�,
  (25) 
In the presentation of our problem formulation we have 

introduced the definition of intervals instead or allowing an 
arbitrary amount of time. This is because in order to 
calculate the cost of running the application we need to 
multiply the number of instances by the time they are active. 
If both the number of instances and running time are 
unknowns this will produce a non linear constraint that 
cannot be processed by our solver. So, if we divide the time 
into intervals (it does not matter if they are equal in size) we 
can calculate the interval cost and capacity before 
generating the problem. Therefore, interval cost and 
capacity are constants and the model can be expressed 
linearly. There are a couple of disadvantages, though. The 
first one is that if a user asks for a 73 minute deadline our 
application will process it as a 70 minute deadline. We feel 
that in our application this is not an issue, and we can 
always increase the number of intervals to get a 5 minute 
resolution (or better). The second disadvantage is that the 
size of the problem increases linearly with the application's 
running time. We are not concerned about this since it is 
always possible to define intervals to be one hour or more, 
get the solution and finally refine the result. For example, an 
application that has a deadline of 34 hours could be 
processed with 2 hours intervals. If the resulting scheduling 
plan takes 30 hours we can a) use this result if it's accurate 
enough b) rerun the problem by introducing a big 24 hour 
interval at the beginning and then 30 minute (or less) 
increment intervals. For our watershed application, 
however, we have found that 10 minute intervals work well. 

The solution to our problem will give us the number of 
active instances of each type that will be active at each 
interval (xi,j), the number of tasks that can be processed 
during each interval by each set of machine types (worki,j), 
the cost (cost) and execution time (max interval for which 
any xi,j is greater than zero). 

B. NP Hardness 

Here we outline a proof of the NP hardness of the 
problem model just introduced. Thus, we can show that an 
optimal solution can only be obtained by using an 
exponential algorithm; although, as we have argued 
previously, the typical problem size that we encounter can 
be solved successfully within milliseconds by lpsolve. Other 
strategies, such as the naive and incremental ones that will 
be introduced with our simulation and experimental results, 
could approximate or even equal the optimal solutions in 
some cases, but not in all of them (since they are polynomial 
time algorithms). 

The basic idea is to perform an efficient reduction from 
the bounded knapsack problem to our problem formulation 
(the minute billing version). Thus, the input to the reduction 
algorithm is the n items, the maximum weight W, the value 
of each item vj, the availability of each item cj, and the 
weight of each item wj. The transformation is simple, the 
number (and length) of intervals is always 1, the NUMBER 
OF TASKS is -W, the AVAILABILITY0,j are the cj, the 

minuteCostj are -vj, and the capacityj are the -wj. This 
reduction is trivially done in polynomial time. 

The solution to our billing problem is the x0,j; that is the 
number of instances of each type running during the only 
interval. Each x0,j corresponds to the number of items of 
each type that will be in the knapsack, xj. Each x0,j will obey 
the bounded knapsack problems restrictions since x0,j ≤ 
AVAILABILITY0,j implies xj ≤ cj. The capacity restriction is 
also taken into account since if we combine equations (19) 
and (21) we have: 

∑ ������
*
 ∗  �O,

 ≥ �5�C�2 �F D�I3I →
 ∑ (
 ∗ �

 ≤ 1 (26) 

since in the reduction we have effectively multiplied by -
1 the equation by assigning -W and -wj to NUMBER OF 
TASKS and capacityj. Finally, the solution to the scheduling 
problem (combining equations (18) and (25)) has to 
correspond to the solution to the knapsack problem; we can 
arrive to this conclusion simply by substituting the variables 
assigned during the reduction: 

���: ∑ �%
��G�' '�%Mℎ
� ∗ ��%�
�6�	

 ∗ ��,
�,
 →
���: ∑ 1 ∗ Q−G
R ∗ �O,

 → ���: ∑ G
 ∗ �

   (27) 

Thus, it holds that in order a solver for our scheduling 
problem formulation (minute billing) will also solve the 
bounded knapsack problem (Bounded Knapsack ≤P  
Scheduling), proving its NP hardness. From this point it is 
easy to see a further reduction to the hourly billing version 
from the minute billing version of the problem in which we 
divide the capacity and cost arrays by 60 to convert hours 
into minutes and then adjust the number of intervals 
accordingly. We do not want to imply that there are no good 
polynomial-time algorithms for schedulers to implement. 
Indeed, as we will see in the next sections algorithms that 
are not naive and take into account the same information 
available to our ILP solver can do well under certain 
circumstances. Our argument is that, given that an optimal 
algorithm which is O(2n) in theory but it is fast in practice 
for the size of problems we are interested in solving, this 
algorithm should be the preferred choice. 

C. Use Case with Hourly Billing 

We present the results of our approach with the hourly 
billing model in Figure 2. For this use case the watershed 
model calibration requires running 1,000 tasks, where each 
task takes 90 seconds to run on a single core and the input 
data size is 1 GB. We compare our approach with two 
different strategies, naïve and incremental. The naïve 
approach is simple: the scientist selects the number of 
instances to run for the complete duration of the job, for 
example, 20 instances. The scheduler selects all the 
available local nodes and if that’s not enough it starts 
several instances in Windows Azure to reach that number. 
In our example we always use 16 local cores and start 
anywhere from 0 to 44 small instances in Windows Azure. 
The dotted-square line in the graph plots the duration of 
each job against its cost (local instances are considered 
free). This line makes a Z type curve around the 1 hour 
limit; even if we select other instance types we observe the 
same phenomena. The cause of this shape is the billing 
model in Windows Azure, where the user pays by the hour, 
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regardless of where she uses 1 or 59 minutes of time. A job 
that with the help of 20 small instances lasts for 63 minutes 
costs $4.8 since we are paying for 40 compute hours. 
However, had the user selected 24 small instances the job 
would have finished in just under one hour and the bill 
would have been $2.88 (24 billable compute hours). Thus, 
we can see here the two main problems with the naïve 
approach: the user interface and the suboptimal choices. The 
user interface asks the user for the number of instances but 
that is not a metric important to her; the metrics the scientist 
cares about are cost and execution time. There is no way for 
the user to relate cost and time to number of instances unless 
she has previous experiences with the system. The other 
problem is that we can clearly see the suboptimal choices 
that are made because of the hourly billing model in cloud 
computing. The worst case scenario for the naïve strategy is 
at the 61 minutes mark, where it costs $5.28 to run the job, 
compared to the $2.76 cost using our strategy. 

We introduce another approach, Incremental, and 
compare both of them to our ILP solver. The incremental 
approach uses benchmarking information to predict the cost 
and execution time of each job given a set of instances of 
different types. If we have information about how long each 
task usually takes on each type of instances, the time it takes 
to initialize a node and stage in the data then we can 
calculate the cost and time of each job before it is submitted 
with a certain configuration. This is the same type of 
information available to our ILP solver. For this approach 
the input from the user is the expected execution time. The 
incremental algorithm starts with the local machines as the 
starting configuration and calculates cost/time. Then it 
incrementally adds instances from Windows Azure (mixing 
different types) up to a limit, and returns the best solution. 
The best solution is the cheapest one whose completion time 

is below the user’s limit. We can see this approach as 
simulating every possible naïve strategy and selecting the 
best one. This way we can avoid the two main problems of 
the naïve strategy: the interface is now presented in terms of 
what the user cares about, cost and time; and there are no 
choices which are clearly wrong (more expensive and 
slower than other possible configurations). In the graph the 
dotted-circle line represents this strategy. 

Even though the choices for the incremental algorithm 
are good, we can do better. Remember that in both naïve 
and incremental we select some instances and run them till 
job completion time. It is possible to stop some instances 
before the job completion time to avoid being billed an 
additional hour. For example, we can start 18 small 
instances in Windows Azure for one hour and use the 16 
local cores for the whole job.  This way the job can be 
completed in 70 minutes and it will cost $2.16. A 
comparable data point for the incremental algorithm is 78 
minutes and $2.16; that is, 11.4% slower for the same 
amount of money. Our strategy (ILP solver) is represented 
by the solid black line.  

As we can see in the graph, both Incremental and ILP 
lines get much closer when the job duration is less than one 
hour. This is expected, since the main advantage for the ILP 
strategy (stopping instances at hour intervals to avoid 
incurring charges because of partial hours) is lost. However, 
we still consider it to be the best mechanism since it gives 
the best solution in all instances. Incremental may get close 
to the best solution for jobs under one hour, but these jobs 
may not be that common in practice since they are twice or 
thrice more expensive to run in exchange for a  25% or 33% 
(15 or 20 minutes) decrease in job execution time. 

D. Multiple Watershed Models 

In our last use case the computational job is divided into 

1,000 tasks, where the only difference between tasks is 

some input parameters (each tasks runs the same watershed 

model). In this section we present the modifications to our 

model in order to support a more complex scenario: 
• The job is composed by k different models where each 

model is composed by NUMBER_OF_TASKSk tasks. 
The execution time varies for each model; all tasks of 
one model last the same amount of time. 

• The input data may be stored locally, in Windows 
Azure or in both. 

The objective function is the same one as in the last use 

case, equation (18). In order to account now for the different 

watershed models we have to modify existing variables. 

Basically we add need the k suffix in order to account for 

the k different models. The new variables worki,j,k and xi,j,k 

are defined in: 
������
*�,
,$ ∗ ��,
,$  ≥  (��)�,
,$ (28) 

∀ �, �: ∑ ��,
,$$ ≤ �H��E�C�E�D�
 (29) 

 

Fig. 2. Job cost and execution time for different Watershed 
schedulings. Naïve estrategies use 16 local cores and additional 
instances of a given type in Windows Azure. ILP Solver selects a 
variable number of instances (and types) over time. 
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The following constraint enforces that the number of 
machines (local or in Windows Azure) used for this job 
decreases monotonically. Thus, if we need to ask for 16 
local cores at some point during the job execution, do it at 
the beginning: 

F��	����	�%	
�%��	
*��	�, �%
��G�'	�:	 
∑ ��,
,$$ ! ∑ ��,
,$$   (30) 

In our last use case we knew that at the start of every job 
every machine that was participating will be staging in the 
necessary data. Here we do not have that advantage since a 
machine could be processing job 1 for the first half an hour 
and then switch to job 2. Thus, the initialization can happen 
at any time and we cannot zero out (or decrease) the 
capacityi,j,K constants, which is what we did before. Instead 
we add the initialization time as negative work done; this is 
used in every machine so we have to multiply this quantity 
by the maximum number of machines that participate 
processing watershed model k: 

F��	����	�%	
�%��	
*��	�,(�
��	�� 	�� �'	):	 
∑ (��)�,
,$ � 	�%�
0�%�'
* ∗	���	�����%�	
,$� !


�
�'_(��)
,$  (31) 
F��	����	�%
��G�'	�, �%	
�%��	
*���,(�
��	�� 	�� �'	): 

���	�����%�	
,$ ! ��,
,$  (32) 

We also need to add a constraint to make sure that all 

tasks for each watershed model are completed: 
∀	):	 ∑ 
�
�'	(��)
,$
 # �5�C�2	�F	D�I3I$  (33) 

Finally, we define the new cost variable. In this case it 
will be composed by the compute costs and possibly data 
transfer costs. In order to define the transfer costs we need 
to introduce new binary variables, transferk,l,m, which are 
one in case we run a watershed model in a location where 
the input data needs to be transferred. For example, running 
a model locally but the input data is located only on 
Windows Azure. The definition of these new variables is: 

F��	����	�%	
�%��	
*��	�, (�
��	�� 	�� �'	):	 
∑ ��,
,$ � ���	D�I3I ∗	 
$,7,A�   (34) 


��%	U��	��	
	 # 	∑ �%��
	 �
�		�V�) ∗ W��	
XC��
' "),',�

��	
XC�%�Y ∗	
),',�  (35) 
	�����
�	��	
	 # 	∑ �%
��G�'	'�%M
�� ∗ ��%�
�6�	

 ∗�,
,$

	��,
,$  (36) 

	��	
 # 
��%	U��	��	
	 " �����
�	��	
	  (37) 
We compare our approach with a data co-location 

strategy. In this case we are submitting for execution 5 
different watershed models, each one composed of 200 tasks 
(1,000 tasks total for calibration). The execution time varies 
from 1 minute to 7.5 minutes (all tasks of one model last the 
same amount of time). In scenario A the inputs for models 
1, 3 and 4 are stored locally and the ones for 2, 3 and 5 are 
stored in Windows Azure. In scenario B the inputs for 
models 1, 2, 3 and 4 are stored locally and the ones for 3 
and 5 are stored in Windows Azure. For scenario A models 
2, 3 and 5 run on Windows Azure and in scenario B models 
3 and 5 do. We present our experimental results on Figure 3. 
In the graph each data point in the data co-location 
strategy’s curve represents a job execution with a fix 
number of cloud instances of the medium size (from 1 to 
32). For the ILP solver, on the other hand, it represents a 
configuration (the solution to the ILP problem) where the 

maximum number of intervals has been set. The data co-
location strategy works well when you have the right 
amount of instances on Windows Azure so that both the 
local and cloud instances finish around the same time. In the 
graph this is represented by the data point at the elbow. The 
advantages of the ILP strategy are two-fold. First, the ILP 
solver's ability to move the data and tasks around gives the 
user a lot more options for balancing the cost and execution 
time. Second, even in the best case data co-location for 
scenario A is 5.4% more expensive than ILP solver and data 
co-locations for scenario B is 18.8% more expensive (than 
ILP solver).  

VI. CONCLUSION 
New algorithms are needed for cloud schedulers. For 

both MapReduce and Monte Carlos we have proposed two 
problem formulations based on ILP. Scheduling decisions 
made by our strategy form a Pareto efficient frontier that are 
faster or cheaper than any alternatives; in MapReduce naïve 
alternatives can often be both by a margin as high as 2.6x 
cheaper and 5.46x faster. For Watershed we find similar 
results for naïve strategies, although existing algorithms can 
still be up to 11% slower and up to 38% more expensive. 
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