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Abstract—Watershed delineation is a process to compute the 
drainage area for a point on the land surface, which is a critical 
step in hydrologic and water resources analysis. However, 
existing watershed delineation tools are still insufficient to 
support hydrologists and watershed researchers due to lack of 
essential capabilities such as fully leveraging scalable and high 
performance computing infrastructure (public cloud), and 
providing predictable performance for the delineation tasks. To 
solve these problems, this paper reports on WDCloud, which is a 
system for large-scale watershed delineation on public cloud. For 
the design and implementation of WDCloud, we employ three 
main approaches: 1) an automated catchment search mechanism 
for a public data set, 2) three performance improvement 
strategies (Data-reuse, parallel-union, and MapReduce), and 3) 
local linear regression-based execution time estimator for 
watershed delineation. Moreover, WDCloud extensively utilizes 
several compute and storage capabilities from Amazon Web 
Services in order to maximize the performance, scalability, and 
elasticity of watershed delineation system. Our evaluations on 
WDCloud focus on two main aspects of WDCloud; the 
performance improvement for watershed delineation via three 
strategies and the estimation accuracy for watershed delineation 
time by local linear regression. The evaluation results show that 
WDCloud can achieve 18x–111x of speed-ups for delineating any 
scale of watershed in the contiguous United States as compared 
to commodity laptop environments, and accurately predict 
execution time for watershed delineation with 85.6% of 
prediction accuracy, which is 23%–43% higher than other state-
of-the-art approaches. 

I. INTRODUCTION 

Analysis of regional-scale watershed systems is critical to 
understand the impact of floods, droughts, and water pollution. 
Watershed modelers use hydrographic data in simulation 
models to better understand potential impacts of these events 
and testing mitigation strategies [19, 22]. The starting point of 
many hydrologic analyses is defining a watershed boundary for 
the area of interest, which is called watershed delineation [10]. 
Watershed delineation plays an important role in hydrologic 
analysis because it defines the scope of the modeling domain, 
thereby impacting all further analysis and modeling steps [11]. 
There are national-scale data available for performing 
watershed delineation, but few convenient tools are able to 
leverage these data for simple and quick watershed delineation 
for any point in the contiguous United States. 

With advancements in computing technology, scientific 
research has become increasingly reliant on computational 
tools to quickly analyze large amounts of data and provide 

useful information to researchers. Unfortunately, the design of 
scientific applications does not necessarily utilize these 
advances. For example, on commodity desktop hardware, 
watershed delineation can take several hours for large 
watersheds. Current approaches also rely heavily on GIS 
desktop software, which can have a steep learning curve for 
those unfamiliar with the software and tedious data preparation 
steps to arrive at the desired watershed boundary dataset [17, 
24]. This high cost and low reward situation is an unnecessary 
burden on hydrologists and watershed researchers constrained 
to modeling smaller watersheds that can be easily 
accommodated by available software options. 

 
Fig. 1. Mississippi Watershed. This is the largest watershed in the United 
States, and is composed of 1,100,000+ catchments, which are distributed over 
10 distinct regions in NHD+. (Courtesy of United State Geological Survey 
[5]). 

Many approaches have been proposed for addressing the 
challenge of watershed delineation at a national-scale [3, 7, 
10]. Castronova and Goodall [10] proposed an approach that 
leveraged pre-computed data from the National Hydrography 
Dataset Plus (NHD+) program [5, 6]. An advantage of this 
approach is that it did not require additional data pre-
computation steps, which are common for many large 
watershed delineation algorithms. However, the approach did 
not scale well to large watersheds (e.g., the Mississippi 
watershed in Figure 1) and resulted in long execution time for 
delineating such a large watershed. Long execution time of 
large watershed delineation in the approach is related to the 
size of underlying data. For example, the Mississippi 
watershed consists of 1,100,000+ NHD+ catchments, which is 
more than 50% of all catchments in United States (U.S. has 
approximately 2 million NHD+ catchments). The algorithm 
requires merging of these individual catchments into a single 
watershed polygon, and execution time of such a large-scale 
watershed delineation is simply dominated by time to perform 
this geometric union operation of catchments. 
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Estimated computation time to delineate the entire 
Mississippi watershed is approximately 10+ hours on 
commodity laptop hardware using the Castronova and Goodall 
algorithm. This does not lend itself to an interactive system 
where the majority of watersheds can be delineated and 
returned while the user waits. While achieving this goal for the 
most extreme cases such as the Mississippi watershed is very 
challenging without significant data pre-processing, delineation 
time of 10 minutes or less is desirable for an online watershed 
delineation tool. Therefore, the scientists need a new software 
architecture on HPC infrastructure for the watershed 
delineation process, which can dramatically reduce the 
execution time of watershed delineation. In terms of building a 
HPC (High Performance Computing) infrastructure for 
watershed delineation, a local HPC cluster is often technically 
and financially infeasible for hydrologists. Thus, leveraging the 
public clouds (e.g. Amazon Web Services [1] and Microsoft 
Azure [2]) as the HPC infrastructure is more desirable due to 
the elasticity, scalability and cost efficiency of public cloud 
[15, 21]. 

Moreover, another challenge of watershed delineation is 
highly variable execution time of delineation tasks based on 
input coordinates. When a scientist requests a particular 
coordinate for delineation, the scientist may not know how 
long the delineation task will take. This is often problematic 
when the scientist expects an instantaneous response to a large 
watershed request. Therefore, to improve the scientists 
experience, a watershed delineation system should be able to 
estimate and provide the execution time of watershed 
delineation with high accuracy. 

To solve the problems, we introduce WDCloud, an end-to-
end system for large-scale watershed delineation on cloud. 
WDCloud employs following approaches; 1) an automated 
catchments search mechanism using NHD+ (National 
Hydrograph Dataset Plus)1 , 2) various performance 
improvement strategies, and 4) a local linear regression (LLR) 
based execution time estimation for watershed delineation. The 
automated catchments search mechanism is designed to allow 
scientists to delineate large-scale and multi-region watersheds. 
We also leverage three strategies to reduce the duration of 
watershed delineation. We employ a data-reuse strategy, 
MapReduce [14], and parallel-union depending on the scale of 
watersheds. WDCloud employs the data-reuse to delineate 
extremely large-scale and multi-region watersheds (e.g. the 
Mississippi watershed). WDCloud also uses MapReduce for 
large-scale watersheds, and leverages the parallel-union for 
medium- and small-scale watersheds. WDCloud automatically 
chooses a proper strategy based on the size of the requested 
watershed. LLR [20] is used to accurately estimate the 
execution time of watershed delineation requests from the 
scientists. We implement WDCloud on Amazon Web Services 
(AWS) with extensive use of various capabilities from AWS 
such as diverse types of virtual machines (VM), autoscaling, 
and cost efficient S3 storage services in order to improve the 
performance of the system. 

                                                           
1 NHD+ [5, 6] is the most recent public hydrograph dataset provided by 
United State Geological Survey (USGS). NHD+ contains essential 
information for watershed and water resource research such as stream flows 
and directions. 

 
Fig. 2. Example of geometric union for catchments. 

Our evaluations focus on two main aspects of WDCloud; 
the speed up of computation time for watershed delineation 
tasks via three performance improvement strategies, and the 
accuracy of delineation time estimation via LLR. In terms of 
the speed up of watershed delineation tasks, WDCloud 
achieves 111x speed up for the Mississippi watershed (the 
largest watershed in U.S.) through the data-reuse strategy, up 
to 21x speed up for large-scale watershed via MapReduce, and 
18x speed up for medium- and small-scale watershed by using 
the parallel-union approach. Moreover, the LLR-based 
delineation time predictor of WDCloud provides the reliable 
estimation of delineation time with 85.6% of prediction 
accuracy. This result is 23%–43% higher than other state-of-
the-art estimation approaches such as kNN [20] and mean-
based estimation [25]. 

The contributions of this paper are: 
·  We introduce WDCloud that allows the hydrologists to 

delineate any scale of watershed in U.S. with faster 
execution time. 

·  We introduce three performance improvement 
strategies (data-reuse, MapReduce, and parallel-union), 
which enable WDCloud to achieve 18x–111x speed up 
of watershed delineation as compared to commodity 
laptop hardware. 

·  We use LLR-based execution time estimator that 
provides predictable performance of watershed 
delineation requests. 

The rest of this paper is organized as follows: Section II 
gives background of this work. Section III highlights the 
design of WDCloud and main approaches. Section IV is the 
evaluation and discussion. Section V contains related work and 
Section VI concludes this paper. 

II. BACKGROUND 

A. Watershed Delineation 
The building blocks of watershed models are geographic 

areas, called catchments. Each catchment is defined by its 
boundary coordinates, and is analogous to nodes in a tree-
structured model that defines the hydrologic connectivity of 
catchments along a river network. A watershed is a collection 
of catchments that collectively define the area that drains to 
some point on the land surface (the outlet of the watershed). 
The computation that joins a set of catchments together, and 
creates the set of boundary points for the watershed is called 
the geometric union of the catchments (shown in Figure 2). 
The result of watershed delineation is used in conjunction with 
land use data and other types of geospatial data to create the 
complete boundary of watershed for a given region. 

The watershed delineation approach proposed by 
Castronova and Goodall [10] is composed of several pipeline 



 
Fig. 3. Architecture of WDCloud on AWS.. 

steps that manipulate and refine the NHD+ [6]. The highest 
computation overhead is to process the geometric union 
operations of catchments, which contribute to forming the 
target watershed. The geometric union operation must examine 
the catchments and merge intermediate boundaries of the 
catchments to build the final boundary of the target watershed. 
This process is time consuming due to the multiple passes 
required to examine and determine each catchment’s effect on 
the boundary of the entire set of catchments. 

Watershed delineation can be performed by hydrologists or 
other interested parties through a program such as GIS tools 
[12, 26] on the scientists’ laptop or online watershed 
delineation services. However, a drawback from using exiting 
GIS tools is that these tools require several steps for the 
hydrologists to manually process underlying hydrography data 
to delineate the target watershed. Online water modeling 
services (e.g. ESRI’s watershed delineation service.2), which 
are similar with WDCloud, also have several disadvantages. 
The disadvantages are black box nature of commercial 
software service and restricted use of open source watershed 
dataset, and high licensing cost. Another option offered by 
USGS is StreamStats [7], which provides online watershed 
delineation capabilities based on NHD. However, StreamStats 
requires significant amounts of pre-computing steps, which can 
delay the incorporation of enhancements in underlying NHD 
data. Moreover, StreamStats is not currently available for all of 
the lower 48 states. 

Instead, WDCloud uses nationally consistent and publicly 
available underlying data (NHD+) with very minimal 
precomputing of these data required in the tool. Therefore, 
enhancements to this dataset can be quickly incorporated into 
WDCloud whereas other systems would require re-running 
data pre-computing steps. This is true for both the ESRI’s 
ArcGIS tool [3] and USGS Stream Stats to the best of our 
knowledge. Furthermore, the typical manual delineation steps 
of Digital Elevation Model (DEM) processing that most 

                                                           
2 https://www.argis.com 

hydrologists would perform requires knowledge of GIS 
software, many data processing steps to arrive at the final 
watershed boundary of interest, and do not scale well to large 
(or even regional) scale watersheds. However, WDCloud, only 
requires the users to select a location on a map, effectively 
removing data management from the user. 

B. National Hydrograph Dataset 
The National Hydrography Dataset (NHD) [5] is an openly 

available vector and raster dataset. Specifically, we integrated 
NHD+ [6], which a version of NHD that includes catchments 
for each NHD reach feature, into WDCloud because it 
possessed several desirable qualities. Namely, the dataset is 
quality controlled and assured by the USGS and includes 
catchment delineations that enforce flow along NHD reaches 
and no flow across boundaries defined in the coarser scale 
Watershed Boundary Dataset (WBD)3. This dataset therefore 
provides a nationally consistent representation of the 
hydrologic connectivity of the landscape. 

NHD+ encompasses the entire contiguous United States, is 
segmented into 21 HUC regions, and contains approximately 2 
million unique catchments. HUC codes are used to segment 
watersheds into groupings of 2, 4, 6, and 8 digit HUCs. 2 digit 
HUCs are the largest watersheds and contain several 4 digit 
HUCs. 4 digit HUCs contain 6 digit HUCs, and 6 digit HUCs 
contain 8 digit HUCs. This provides a segmentation to NHD+ 
catchments that makes it possible to know, based on its HUC, 
what 2 digit, 4 digit, 6 digit, and 8 digit HUC watershed that 
catchment is within common geospatial dataset. 

III.  WDCLOUD DESIGN 

A. Design of WDCloud on AWS 
WDCloud is composed of six components as shown in 

Figure 3. These six components are: 1) a web portal for 
watershed delineation, 2) NHD+ database, 3) automated 
catchment search module, 4) geometric union module, 5) exec-�

                                                           
3 http://nhd.usgs.gov/wbd.html 



 
 

ution time estimator, and 6) compute and storage resources on 
AWS. 

Web Portal for Watershed Delineation: This portal 
provides a user interface to select an outlet coordinate for 
delineating a target watershed. Once a hydrologist selects a 
point of interest on the user interface on the portal and clicks 
on a submit button, a process for watershed delineation starts. 
This portal is also used to confirm the final delineation result 
for the input coordinate. The final result will be displayed on 
this portal and provided as several files, which are existing GIS 
tool-compliant format such as Keyhole Markup Language [4]. 

NHD+ Database: This component contains NHD+ dataset 
required for watershed delineation. Originally, NHD+ consists 
of 21 distinct HUC region dataset (for contiguous U.S.). Each 
HUC region dataset includes several raw-level hydrography 
data such as DEM (Digital Elevation Mode) and flow 
direction/ accumulations. Each dataset only covers limited 
areas in U.S. based on HUC code. In order to facilitate the 
delineation for the large-scale watershed (e.g. Mississippi), we 
extract necessary data from NHD+ and store these data to 
Microsoft SQL Server. 

Automated Catchment Search Module: This module is 
used to automatically collect relevant catchments for the target 
watershed, which is distributed on multiple HUC regions in 
NHD+. The details of this automated mechanism will be 
described in Section III-B. 

Geometric Union Module: This module performs the 
geometric union operation to calculate the final result of the 
target watershed. We proposed three strategies to improve the 
performance of geometric union operation. The three strategies 
will be described in Section III-C. 

Execution Time Estimator: This component is used to 
provide accurate estimation for delineation time of the target 
watershed. We employ LLR (Local Linear Regression) for this 
estimation. This estimator will be explained in Section III-D.  

Compute and Storage Resources on AWS: WDCloud 
uses Amazon Web Service (AWS) [1] cloud infrastructure for 
its computing and data management environments. WDCloud 
utilizes various configurations (e.g. a single VM or VM 
cluster) and types of VMs based on the union strategy from the 
geometric union module. These VMs performs actual delineat- 

TABLE I.  THREE ATTRIBUTES FOR AUTOMATED CATCHMENTS SEARCH 
MECHANISM 

Attributes Description 

HydroSeq Unique hydrologic sequence number 
assigned to each region in the dataset. 

TerminalPath Hydrologic sequence number of the terminal 
feature of the watershed network. 

DnHydroSeq Hydrologic sequence number of 
downstream. 

 

ion process for the watershed. (most processes of watershed 
delineation performed on VMs are related to geometric union 
of catchments.) The VM resources on WDCloud are managed 
by autoscaling mechanism, which will be described in Section 
III-E. Moreover, WDCloud leverages Amazon S3 (Simple 
Storage Service) [1] in order to store pre-compute data for 
large-scale watershed and delineation results. 

B. Automated Catchment Search Mechanism using NHD+ 
To automatically search and collect relevant catchments for 

the target watershed, we propose an Automated Catchments 
Search Mechanism (ACSM) using NHD+. For the ACSM, we 
leverage three main attributes provided by NHD+. These three 
attributes are TerminalPath, HydropSeq, and DnHydroSeq 
[10], which are described in Table I.  

Algorithm 1 describes the details of the ACSM. The ACSM 
starts with finding a proper HUC region dataset (start HUC 
region) in NHD+ for an outlet coordinate (input from a user) of 
the target watershed (ln 1). Based on the coordinate and the 
HUC region dataset for the input outlet, this automated 
mechanism finds TerminalPath for the watershed (ln 2). Using 
TerminalPath, the ACSM finds catchments for the target 
watershed in that HUC region. The ACSM, then, finds 
HydropSeqs (multi region hydroseqs at ln 5) in the HUC 
region, which encompass the target watershed’s hydrological 
flow information with other HUC regions in NHD+. If multi 
region hydroseqs exist, this means that the target watershed is 
also distributed over other HUC regions in NHD+ (ln 6). 
Otherwise, the target watershed is composed of catchments in a 
single HUC region (start HUC region). 



 
Fig. 4. Data-reuse Example – E and F are pre-defined regions. The black 
catchment is aggregated. Since the gray catchment flows into the black 
catchment, the gray catchment and its watershed, labeled G, must also be 
collected. 

By leveraging multi region hydroseqs, the ACSM finds all 
relevant other HUC region dataset by comparing DnHydroSeq 
in other HUC regions with multi region hydroseqs (ln 7). The 
ACSM searches for all relevant HUC regions and finds 
catchments in those regions by using TerminalPath (ln 10). 
Once the ACSM completes to explore all relevant HUC 
regions, all catchments to form the target watershed are 
collected. 

C. Performance Improvement Strategies for Geometric Union 
Once the ACSM collects all relevant catchments for the 

target watershed, the watershed delineation performs geometric 
union operation (Figure 2 in Section II-A) using all the 
catchments to build a single catchment representing the 
boundary of the target watershed. This geometric union is the 
most time consuming operation in the watershed delineation. 
To reduce the execution time for the geometric union 
operation, we employ three strategies: 1) data-reuse, 2) 
parallel-union, and 3) MapReduce. 

Data-Reuse: The general architecture for data-reuse is to 
pre-compute catchment unions. When a stored point is 
accessed, instead of a full traversal and merge of all the 
relevant catchments, traversal halts and a single catchment is 
read. Precomputation and storage eliminates time spent 
traversing the catchment network and limits the count of 
catchments passed to the union operation. Although, this 
strategy has similarities with caching, it is much different. 
Data-reuse provides a guaranteed performance enhancement 
unlike caching. Data-reuse does not require a specific point of 
interest to be already selected by a user in order for that point 
to achieve a performance increase. Data-reuse is an offline 
optimization that targets the large-scale and multi-region 
watersheds such as the Mississippi watershed.  

By pre-computing every point, the union computation 
would require a single file read operation, greatly improving 
runtime performance. This level of pre-computation is 
infeasible because of two reasons. First, the time required to 
pre-compute every point would cause a delay in the adoption 
of new data sources. In other words, if new data was desired by 
the hydrologists, they would be forced to wait weeks if not 
months to actually work with their data. The other is the cost of 
storing, possibly 1-2 Gigabytes, each of the 2 million 
catchments in NHD+, which quickly removes some of the cost 
benefit our system exhibits over other systems. 

By utilizing watershed domain knowledge, we create a 
data-reuse mechanism that efficiently stores pre-computed 
watershed data by targeting all points requiring multi-region 
results. This provides great improvement at very limited cost in 

terms of both time and money. In NHD+, the hydrology data 
for the contiguous U.S. is divided into 21 distinct regions. Each 
region can have a few catchments that connect to another 
region. Data-reuse stores results that span the regional 
boundaries, leveraging the natural segmentation of the data. By 
storing these multi-region watersheds, the performance is 
benefited by eliminating multiple queries to aggregate the 
multi-region catchments and the fact that this allows most of 
the work to be computed offline. Figure 4 shows an example 
for the multi-region data-reuse strategy. E and F are regions 
defined as part of the NHD+ dataset. The gray catchment in F 
flows into the black catchment in E. This means that when the 
black catchment is collected, the gray catchment must also be 
collected and the watershed of the gray catchment is shown as 
the area encompassed by the dotted line, labeled G. Data-reuse 
pre-computes the watershed G and stores it, so it can be 
retrieved when the black catchment is collected. The data-reuse 
limits traversal of the catchments and the number of 
catchments sent to the union by targeting large watersheds. 
This strategy has a low memory cost since it consists of storing 
only 16 files (total file size is 106 MB). 

 
Fig. 5. Parallel-Union subsystem. 

Parallel-Union: The second strategy is parallel-union that 
concurrently processes the geometric union via threading. 
Figure 5 shows the architecture of the parallel-union 
subsystem. The parallel-union starts with receiving a collection 
of all relevant catchments from the ACSM (described in 
Section III-B). The collected catchments are sent to the Parallel 
Task Creation Unit (PTCU). The PTCU partitions the 
catchments into k subsets evenly. The PTCU, then, initiates k 
parallel tasks and sends each subset of catchments to each task 
that performs the 1st union operation on a subset of the 
catchments, and then sends its interim union result of 
catchment to the Interim Catchment Union Unit (ICUU). Once 
all parallel tasks have sent their interim results to the ICUU, the 
k interim results of catchments are merged by 2nd union 
operation to create the final result for the target watershed. 

A key issue of parallel-union is how to choose the proper 
number of parallel tasks for the watershed delineation. A 
common approach is to create the same number of tasks with 
the number of cores on a machine. (e.g. 4 parallel tasks for 4 
core machine.) However, this approach does not necessarily 
work on virtualized environments such as VM on public 
clouds. In order to determine the proper number of parallel 
tasks, we will show variable evaluation results in Section IV. 

The parallel-union approach was essentially designed to 
minimize the execution time of the watershed delineation on 
multi-core single machine. Even though we can leverage 



various VM types offered by AWS, there are limitations4 to 
minimize the execution time of watershed delineation by the 
parallel-union strategy because of the physical limitations of 
the HW specifications. Leveraging a single machine is often 
insufficient for a certain scale of watersheds. For those 
largescale watershed, we use multiple machines via 
MapReduce. 

MapReduce: MapReduce is a common distributed 
programming paradigm consisting of two phases [14]. The first 
phase maps the data to an intermediate format. The second 
phase reduces the intermediate data to a final output. Although 
AWS offers on-demand MapReduce services such as EMR 
(Elastic MapReduce)5, we pursue an Apache Hadoop6, an open 
source implementation of MapReduce, cluster on AWS. We 
choose not to use EMR because this service limits our 
debugging capabilities for MapReduce jobs. 

Hadoop allows us to distribute data and computation across 
several nodes. Hadoop parallelizes operations by creating 
containers that run the mapper and/or reducer. These containers 
consist of allocated virtual cores and memory. Also, Hadoop 
offers HDFS (Hadoop Distributed File System), which can 
redundantly store data across the cluster. HDFS partitions the 
data to distribute the computation across the clusters nodes and 
to stream as input into the map procedures. This partitioning 
has an impact on the performance of this system, which will be 
described in a later section. 

This process of map and reduce intuitively resembles our 
system’s current parallel-union model. The mapping phase of 
the geometric union is similar with the PTCU and the parallel 
tasks themselves shown in Figure 5. The reduce phase is 
similar with the ICUU. This strategy utilizes a Hadoop cluster 
on AWS to distribute the geometric union to multiple virtual 
machines. This allows us to achieve much more performance 
improvement than using the parallel-union on a single VM. 
Thus, when the collection of catchments for the target 
watershed is too large to be unioned in the required time, they 
are sent to the Hadoop cluster where they are processed with 
MapReduce and the result is then returned. 

TABLE II.  STRATEGY SELECTION CRITERIA FOR CATCHMENT UNION 
PROCESSING 

Strategy # of Catchments # of VMs 

Data-Reuse Multi-HUC region case 1 

Parallel-Union # of Catchments < 25K 1 

MapReduce # of Catchments �  25K > 1 
 

Strategy Selection Criteria: Three performance 
improvement strategies of WDCloud target different facets of 
the performance and therefore are not required for every input. 
Table II shows the strategy selection criteria to select a proper 
approach for union operation of catchments. 

The data-reuse strategy is only utilized when a watershed 
crosses a NHD+ regional boundary. This is determined during 

                                                           
4 m1–m3 instance types in AWS normally have 1 to 8 of virtual CPU cores on 
a single VM [1]. 
5 http://aws.amazon.com/elasticmapreduce/ 
6 http://hadoop.apache.org 

catchment aggregation and its use largely depends on the input 
and catchments involved in the watershed. 

The parallelization-based approaches (e.g. parallel-union 
and MapReduce) can be used in either single machine or a 
multiple number of machines. The parallel-union approach will 
be used when a single VM can provide the desired 
performance (e.g. total delineation time is less than 20 
minutes). And MapReduce approach is for the case that a 
single VM cannot provide the desired runtime performance. 
Thus, the watershed delineation system automatically 
determines either approach based on the number of catchments 
to be unioned. If the number of catchment is less than 25K, the 
system assigns the request to a single VM on AWS and uses 
the parallel-union. Otherwise the system sends this request to 
Hadoop cluster on AWS for MapReduce operation. 

 
Fig. 6. Local Linear Regression-based execution time estimator for 

watershed delineation 

D. Execution Time Estimation for Watershed Delineation 
As we pointed out in Section I, an accurate estimation of 

the execution time for the watershed delineation is an 
important issue to improve the scientists’ productivity for their 
research. To estimate execution time of the delineation, we use 
LLR (Local Linear Regression) [20] based execution time 
estimator, which is investigated by our previous work [23]. 
Figure 6 shows the procedure of LLR estimator. This estimator 
takes a coordinate for outlet of the target watershed as its input 
parameter. The LLR estimator collects similar execution 
samples (from the past execution history) with the input 
coordinate using kNN method. kNN methods uses three 
features: 

·  The number of catchments for the target watershed.  
·  Geographical closeness to the input coordinate. 
·  Execution environments (e.g. VM type). 
The next step is to create a simple linear regression model 

based on the collected samples from the kNN. The parameters 
(�  and �  represent the intercept and slope of the linear model) 
for the linear regression model can be calculated by 
minimizing the objective function in equation-1. In equation-1, 
x0 represents the outlet coordinate for the watershed and V 
means the set of similar samples with the outlet coordinate. 

 



LLR estimator, then, provides the estimated execution time 
(f(x0)) for the input coordinate by the linear regression model 
obtained by the previous step. 

 

E. VM Resource Management: Autoscaling 
VM resources used by WDCloud are managed by an 

autoscaling mechanism. The autoscaling mechanism is 
designed to automatically manage both under- and over-
provisioning of VMs for WDCloud. Note that autoscaling of 
WDCloud is different mechanism from “Auto Scaling” offered 
by AWS [1]. The under-provisioning of VM resources can 
result in poor performance (e.g. slow response time) of 
WDCloud due to the lack of computing resources. Over-
provisioning can hurt the cost-efficiency of WDCloud due to a 
number of idle VMs. 

 
Algorithm 2 shows the scaling-up mechanism of the 

autoscaling. The scaling-up decision is triggered when a new 
delineation job (jobnew) arrives. The autoscaling, then, obtains 
the information of currently running VMs (ln 1). The next step 
is that the autoscaling calculates the estimated job completion 
time on each running VM by the sum of estimated execution 
times of all existing jobs in work queue on the VM and the 
estimated execution time of jobnew (ln 5). For this step, the 
autoscaling collaborates with LLR execution time estimator in 
Section III-D. The autoscaling compares the estimated 
completion time of the new job (jobnew) with a threshold (ln 6), 
which is defined by the user (e.g. 30 minutes or 1 hour). If the 
estimated completion time of the new job is earlier then the 
threshold, the autoscaling stores the VM into a candidate VM 
list (CandidateVMs) for the job execution (ln 7). If existing 
VMs can completes the jobnew within the threshold (ln 12), the 
jobnew will be assigned to a VM that offers earliest completion 
of jobnew (ln 13–14). Otherwise, the autoscaling creates a new 
VM (scaling-up) and assigned the new job to the new VM (ln 
16–17). 

For the scaling-down operation (Algorithm 3), the 
autoscaling uses the billing boundary-based VM scaling-down. 
Because WDCloud runs on AWS, the autoscaling uses the 
hourly billing bound of AWS (ln 5). A key step of the scaling-

down operation is that a VM will be terminated when the 
VM’s running time is approaching the billing bound, the VM’s 
status is idle state, and the Queue of the VM is empty (ln 5–6). 

 

IV. EVALUATION  

In the evaluations of WDCloud, we focus on two main 
aspects of WDCloud, which are the performance improvement 
via three strategies (Section III-C) and the accuracy of the 
execution time estimation via LLR estimator (Section III-D). 

A. Performance Improvement via Three Strategies 
Data-Reuse: The main focus of data-reuse was the specific 

targeting of the largest watersheds (e.g. the Mississippi), those 
spanning multiple regions. By leveraging the segmentation of 
the NHD+, data-reuse achieves a 111x speedup as shown in 
Table III. This paragraph discusses about this large speedup. 

TABLE III.  SPEED-UPS BY DATA-REUSE FOR THE MISSISSIPPI 
WATERSHED 

Commodity Laptop Data-Reuse Speed-Up 

10+ hours 5.5 minutes 111x 
 

The Mississippi watershed of 1,100,000+ catchments 
originally required 10+ hours to perform the geometric union. 
That same example required 5.5 minutes to union when 
utilizing the data-reuse strategy. To explain this large speed-
ups, which only required the storage of 106 MB of pre-
computed data, we describe an example execution. Our 
Mississippi example aggregates a total of 1,117,172 
catchments. Once the data-reuse is used, the Mississippi 
example aggregates only 29,137 catchments. This equates to 
pre-computing the union of 1,088,035 catchments, which is 
97% of the original catchments. This 111x speedup exceeded 
our initial estimates (e.g. less than 20 minutes) and resolved the 
largest class of watersheds, but several watersheds of 
approximately 100K to 250K catchments that took 4+ hours to 
delineate still remained. These large watershed will be dealt 
with other two parallelization strategies. 

Parallel-Union: This strategy was designed to maximize 
the performance of a single VM, and is used for small- and 
medium-scale watersheds (# of catchments < 25K). A key 
issue of the parallel-union is how to choose the proper number 
of parallel tasks for the watershed delineation. To determine 
the proper number of parallel tasks, we executes four example 
watersheds with 1 to 32 tasks on different types of VMs on 
AWS. These four watersheds contains less than 25K 
catchments, and they are in Pennsylvania (140 catchments),  



 
Fig. 7. Normalized geometric-union time of watershed delineation by parallel-union strategy on four types of VMs. 

South Carolina (155 catchments), Virginia (430 catchments), 
and Tennessee (23K catchments). We also used four different 
types of general purpose VMs (e.g. m1 instances) [1] for this 
evaluation. The results for the parallel-union evaluation are 
shown in Figure 7, and all results are normalized to the 
geometric union time from non-parallelization case (a single 
task). Back bold line in all graphs is an average of normalized 
geometric union time of four watersheds by the parallel-union 
strategy. The results show that, on average, the parallel-union 
provides the best performance improvement when WDCloud 
creates 8–32 tasks for the geometric union. (3x speed up on the 
medium VM, 3.1x speed up on the large VM, 3.6x speed up on 
the xlarge VM, and 2.9x speed up on the 2xlarge VM.) By 
using the parallel union strategy, we can complete the 
delineation for the four watersheds with 28–150 seconds (8 
parallel tasks on 2xlarge instance). Without the parallel-union, 
these four watershed take approximately 500–3200 seconds 
(single tasks on medium instance). These results implies 
WDCloud with the parallel-union can handle small- and 
medium-scale watershed (# of catchments < 25K), but this 
strategy is not sufficient to obtain enough performance 
improvement for large-scale watersheds (# of catchments �  
25K). Those large-scale watersheds will be handled by the 
MapReduce strategy. 

MapReduce: To show the performance improvement by 
the MapReduce strategy, three large-scale watersheds on 
Hadoop cluster are examined. These three large-scale 
watersheds are located in Maine (66K catchments), Kentucky 
(107K catchments), and South Dakota (253K catchments). In 
this evaluation, WDCloud uses 4 to 32 cores of Hadoop 
cluster7. The evaluation results by the MapReduce strategy are 
shown in Figure 8. As shown in the graph, by leveraging 32 
core Hadoop cluster, WDCloud can achieve 7x of speed-ups 

                                                           
7 4 cores of Hadoop cluster uses 4 medium VMs (4 x 1 core). 8 cores of 
Hadoop cluster has 4 large VMs (4 x 2 cores). 16 cores of Hadoop cluster 
consists of 4 xlarge VMs (4 x 4 cores). 32 cores of Hadoop cluster is 
composed of 4 2xlarge VMs (4 x 8 cores). 

for Maine watershed (66K), 11x of speed-ups for Kentucky 
watershed (107K), and 21.2x of speed-ups for South Dakota 
watershed (253K). These results also show that the more 
catchments a watershed includes, the higher speed-ups 
WDCloud can achieve. For the South Dakota watershed, the 
delineation takes 4.2 hours with no parallelization, but the 
same delineation takes only 11.8 minutes with 32 core Hadoop 
cluster. 

 
Fig. 8. Speed-up for geometric union of large-scale watershed by 
MapReduce. 

B. Execution Time Estimation for Watershed Delineation 
The next evaluation is to measure the performance of LLR 

estimator of WDCloud for predicting the execution time of 
watershed delineation. We employ prediction accuracy and 
MAPE (Mean Absolute Percentage Error) for this evaluation 
and these metrics are shown in equation (3)–(4). A higher 
result of prediction accuracy means better, and lower result of 
MAPE indicates better performance. 

 



TABLE IV.  OVERALL EVALUATION RESULTS FOR EXECUTION TIME 
ESTIMATION 

 LLR Estimator kNN mean 
Prediction 
Accuracy 85.6% 65.7% 42.8% 

MAPE 0.19 0.93 1.97 
 

As the baselines of this evaluation, we use kNN [20] and 
mean [25]. For the execution time estimation, kNN uses three 
features that are 1) geographical closeness to the target 
watershed, 2) the number of catchments, and 3) the type of VM 
instances, which are the same with LLR estimation. 

We measures 420 random coordinates (20 random 
coordinates of watershed outlets x 21 HUC regions) for 
execution time estimation. The overall results are shown in 
Table IV. As shown in Table IV, LLR estimator outperforms 
other two approaches. The prediction accuracy of LLR 
estimator is 85.6%, which is 19.9% and 42.8% higher than 
kNN and mean-based estimator. The MAPE result of LLR is 
0.19, which is 4.9x and 10.4x lower (better) than others. 

Moreover, to show the performance of LLR estimator that 
can precisely estimate the delineation time for watershed 
outlets on all 21 HUC regions in NHD+, we show the 
estimation results of three estimators based on each HUC 
regions. Figure 9 shows the estimation results on all 21 HUC 
regions. For the prediction accuracy on all 21 HUC regions 
(Figure 9(a)), LLR estimator shows over 80% of prediction 
accuracy for all 21 regions. For the MAPE results (Figure 
9(b)), LLR estimator has accurate MAPE results, which are less 
than 0.23, except for only two HUC regions (08 and 13 HUC 
regions). These results show that LLR estimator provides 
reasonable estimation for the execution time of the watershed 
delineation, and can provide precise estimation results for 
almost all HUC regions in NHD+. 

V. EVALUATION  

Geospatial data analysis research has benefited from the 
technical advancements of cloud computing. Several works 
have shown the clouds ability to provide performance 
improvements to these data and compute intensive 
applications. 

A system to increase the performance of watershed 
calibration by utilizing the cloud was designed by Humphrey et 
al [22]. This system reduced an 11 hour computation to a 5 
minute computation by using cloud computing. They focused 
on core utilization and the parallelization of the application; 
instead we also focus on using specific characteristics of the 
application (e.g. Data-reuse) to improve the runtime without 
such large compute clusters. Furthermore, we incorporate 
MapReduce to distribute our computation instead of 
performing it manually.  

Caching is similar in style to the data-reuse strategy of this 
work. Chiu et al [13] proposed a strategy for caching in the 
cloud. This caching is most useful for the results of a Service-
Oriented Application (SOA), but not useful for our applications 
storage of intermediate data formats. The data-reuse is similar 
to caching, but not equivalent because the pre-computed data 
will never be swapped while the system is online.  

Several works [8, 18, 27] utilize MapReduce to enhance 
their GIS and spatial data analysis applications. Hadoop-GIS 
[8] was designed to improve spatial query processing 
capabilities of GIS via adopting MapReduce. Hadoop-GIS 
supports several spatial enhancement capabilities such as 
spatial data partitioning for parallel processing, and spatial 
query processing. Hadoop-GIS is also integrated with Hive. 
SpatialHadoop [18] is a low-level extension of Hadoop and 
supports spatial indexing for its input dataset to facilitate the 
spatial data processing. Dart [27] is another type of GIS on 
Hadoop. Dart is collaborating with HBase and provides a 
hybrid table schema to store spatial data in HBase. Dart utilizes 
public cloud infrastructure such as Amazon EC2. These 
research are relevant to our work, but our work is different 
because we employ MapReduce as a part of our three strategies 
to improve the performance of geometric union in the 
watershed delineation process.  

Alencar et al [9] have reported an on-going research project 
to employ cloud infrastructure and capabilities to watershed 
research. Their work is to build a cloud-based collaborative 
platform for watershed research. A difference from our work is 
that they focus on giving collaborative capabilities (e.g. 
hydrology data sharing) for stakeholders (e.g. scientists and 
decision makers) to watershed research system via 
CometCloud [16]. WDCloud does not consider having 
collaborative capabilities for watershed delineation. Another 
difference is that it is unclear which raw dataset they use for 
their project. 

VI. CONCLUSION 

Watershed delineation is a process to determine the area 
draining to a point on the land surface. This plays a critical role 
for hydrologic and water resources research because watershed 
delineation is often the first step of an analysis. However, 
existing watershed delineation tools are insufficient to support 
hydrologists because they have not kept pace with new datasets 
that allow for national-scale watershed delineation over the 
web without requiring extensive data preprocessing steps. 
Watershed delineation applications lack the capabilities to fully 
leverage scalable and high performance computing 
infrastructure (e.g. public cloud), and provide predictable 
performance for the delineation tasks. 

To solve these problems, this paper reports on WDCloud, 
which is a system for large-scale watershed delineation on 
AWS. WDCloud employed three key approaches: 

·  An automated catchment search mechanism for NHD+, 
which is a public watershed dataset from USGS. 

·  Three performance improvement strategies: Data-reuse, 
parallel-union, and MapReduce. 

·  LLR execution time estimator for watershed delineation. 
Our evaluations on WDCloud mainly focus on 1) the 
performance improvement for watershed delineation via three 
strategies and 2) the prediction accuracy for delineation time 
by LLR estimator. In terms of the speed up of watershed 
delineation tasks, WDCloud achieves 111x speed up for the 
Mississippi watershed (the largest watershed in U.S.) through 
the data-reuse strategy, up to 21x speed up for large-scale 
watershed via MapReduce, and 18x speed up for medium- and 



small-scale watershed by using the parallel-union approach. Moreover, the LLR estimator of WDCloud provides the relia- 

 
Fig. 9. Execution time estimation results of three estimators on 21 HUC regions. 

ble execution time estimation of watershed delineation with 
85% of prediction accuracy. This result is 23%-43% better 
than other state-of-the-art estimation approaches. 
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