
������� : An End to End System for Large-Scale
Watershed Delineation on Cloud

In Kee Kim*, Jacob Steele*, Anthony M. Castronovay+, Jonathan L. Goodall*, and Marty Humphrey*
*University of Virginia, Charlottesville, VA, 22903, fik2sb, jss2zb, goodallg@virginia.edu, humphrey@cs.virginia.edu

+Utah State University, Logan, UT, 84322, tony.castronova@usu.edu

Abstract—Watershed delineation is a process to compute the
drainage area for a point on the land surface, which is a critical
step in hydrologic and water resources analysis. However,
existing watershed delineation tools are still insufficient to
support hydrologists and watershed researchers due to lack of
essential capabilities such as fully leveraging scalable and high
performance computing infrastructure (public cloud), and
providing predictable performance for the delineation tasks. To
solve these problems, this paper reports on WDCloud, which is a
system for large-scale watershed delineation on public cloud. For
the design and implementation of WDCloud, we employ three
main approaches: 1) an automated catchment search mechanism
for a public data set, 2) three performance improvement
strategies (Data-reuse, parallel-union, and MapReduce), and 3)
local linear regression-based execution time estimator for
watershed delineation. Moreover, WDCloud extensively utilizes
several compute and storage capabilities from Amazon Web
Services in order to maximize the performance, scalability, and
elasticity of watershed delineation system. Our evaluations on
WDCloud focus on two main aspects of WDCloud; the
performance improvement for watershed delineation via three
strategies and the estimation accuracy for watershed delineation
time by local linear regression. The evaluation results show that
WDCloud can achieve 18x–111x of speed-ups for delineating any
scale of watershed in the contiguous United States as compared
to commodity laptop environments, and accurately predict
execution time for watershed delineation with 85.6% of
prediction accuracy, which is 23%–43% higher than other state-
of-the-art approaches.

I. INTRODUCTION

Analysis of regional-scale watershed systems is critical to
understand the impact of floods, droughts, and water pollution.
Watershed modelers use hydrographic data in simulation
models to better understand potential impacts of these events
and testing mitigation strategies [19, 22]. The starting point of
many hydrologic analyses is defining a watershed boundary for
the area of interest, which is called watershed delineation [10].
Watershed delineation plays an important role in hydrologic
analysis because it defines the scope of the modeling domain,
thereby impacting all further analysis and modeling steps [11].
There are national-scale data available for performing
watershed delineation, but few convenient tools are able to
leverage these data for simple and quick watershed delineation
for any point in the contiguous United States.

With advancements in computing technology, scientific
research has become increasingly reliant on computational
tools to quickly analyze large amounts of data and provide

useful information to researchers. Unfortunately, the design of
scientific applications does not necessarily utilize these
advances. For example, on commodity desktop hardware,
watershed delineation can take several hours for large
watersheds. Current approaches also rely heavily on GIS
desktop software, which can have a steep learning curve for
those unfamiliar with the software and tedious data preparation
steps to arrive at the desired watershed boundary dataset [17,
24]. This high cost and low reward situation is an unnecessary
burden on hydrologists and watershed researchers constrained
to modeling smaller watersheds that can be easily
accommodated by available software options.

Fig. 1. Mississippi Watershed. This is the largest watershed in the United
States, and is composed of 1,100,000+ catchments, which are distributed over
10 distinct regions in NHD+. (Courtesy of United State Geological Survey
[5]).

Many approaches have been proposed for addressing the
challenge of watershed delineation at a national-scale [3, 7,
10]. Castronova and Goodall [10] proposed an approach that
leveraged pre-computed data from the National Hydrography
Dataset Plus (NHD+) program [5, 6]. An advantage of this
approach is that it did not require additional data pre-
computation steps, which are common for many large
watershed delineation algorithms. However, the approach did
not scale well to large watersheds (e.g., the Mississippi
watershed in Figure 1) and resulted in long execution time for
delineating such a large watershed. Long execution time of
large watershed delineation in the approach is related to the
size of underlying data. For example, the Mississippi
watershed consists of 1,100,000+ NHD+ catchments, which is
more than 50% of all catchments in United States (U.S. has
approximately 2 million NHD+ catchments). The algorithm
requires merging of these individual catchments into a single
watershed polygon, and execution time of such a large-scale
watershed delineation is simply dominated by time to perform
this geometric union operation of catchments.

Preliminary version. Final version to appear in IEEE Big Data in the Geosciences
Workshop. Oct 29, 2015, Santa Clara, CA, USA.

Estimated computation time to delineate the entire
Mississippi watershed is approximately 10+ hours on
commodity laptop hardware using the Castronova and Goodall
algorithm. This does not lend itself to an interactive system
where the majority of watersheds can be delineated and
returned while the user waits. While achieving this goal for the
most extreme cases such as the Mississippi watershed is very
challenging without significant data pre-processing, delineation
time of 10 minutes or less is desirable for an online watershed
delineation tool. Therefore, the scientists need a new software
architecture on HPC infrastructure for the watershed
delineation process, which can dramatically reduce the
execution time of watershed delineation. In terms of building a
HPC (High Performance Computing) infrastructure for
watershed delineation, a local HPC cluster is often technically
and financially infeasible for hydrologists. Thus, leveraging the
public clouds (e.g. Amazon Web Services [1] and Microsoft
Azure [2]) as the HPC infrastructure is more desirable due to
the elasticity, scalability and cost efficiency of public cloud
[15, 21].

Moreover, another challenge of watershed delineation is
highly variable execution time of delineation tasks based on
input coordinates. When a scientist requests a particular
coordinate for delineation, the scientist may not know how
long the delineation task will take. This is often problematic
when the scientist expects an instantaneous response to a large
watershed request. Therefore, to improve the scientists
experience, a watershed delineation system should be able to
estimate and provide the execution time of watershed
delineation with high accuracy.

To solve the problems, we introduce WDCloud, an end-to-
end system for large-scale watershed delineation on cloud.
WDCloud employs following approaches; 1) an automated
catchments search mechanism using NHD+ (National
Hydrograph Dataset Plus)1 , 2) various performance
improvement strategies, and 4) a local linear regression (LLR)
based execution time estimation for watershed delineation. The
automated catchments search mechanism is designed to allow
scientists to delineate large-scale and multi-region watersheds.
We also leverage three strategies to reduce the duration of
watershed delineation. We employ a data-reuse strategy,
MapReduce [14], and parallel-union depending on the scale of
watersheds. WDCloud employs the data-reuse to delineate
extremely large-scale and multi-region watersheds (e.g. the
Mississippi watershed). WDCloud also uses MapReduce for
large-scale watersheds, and leverages the parallel-union for
medium- and small-scale watersheds. WDCloud automatically
chooses a proper strategy based on the size of the requested
watershed. LLR [20] is used to accurately estimate the
execution time of watershed delineation requests from the
scientists. We implement WDCloud on Amazon Web Services
(AWS) with extensive use of various capabilities from AWS
such as diverse types of virtual machines (VM), autoscaling,
and cost efficient S3 storage services in order to improve the
performance of the system.

1 NHD+ [5, 6] is the most recent public hydrograph dataset provided by
United State Geological Survey (USGS). NHD+ contains essential
information for watershed and water resource research such as stream flows
and directions.

Fig. 2. Example of geometric union for catchments.

Our evaluations focus on two main aspects of WDCloud;
the speed up of computation time for watershed delineation
tasks via three performance improvement strategies, and the
accuracy of delineation time estimation via LLR. In terms of
the speed up of watershed delineation tasks, WDCloud
achieves 111x speed up for the Mississippi watershed (the
largest watershed in U.S.) through the data-reuse strategy, up
to 21x speed up for large-scale watershed via MapReduce, and
18x speed up for medium- and small-scale watershed by using
the parallel-union approach. Moreover, the LLR-based
delineation time predictor of WDCloud provides the reliable
estimation of delineation time with 85.6% of prediction
accuracy. This result is 23%–43% higher than other state-of-
the-art estimation approaches such as kNN [20] and mean-
based estimation [25].

The contributions of this paper are:
· We introduce WDCloud that allows the hydrologists to

delineate any scale of watershed in U.S. with faster
execution time.

· We introduce three performance improvement
strategies (data-reuse, MapReduce, and parallel-union),
which enable WDCloud to achieve 18x–111x speed up
of watershed delineation as compared to commodity
laptop hardware.

· We use LLR-based execution time estimator that
provides predictable performance of watershed
delineation requests.

The rest of this paper is organized as follows: Section II
gives background of this work. Section III highlights the
design of WDCloud and main approaches. Section IV is the
evaluation and discussion. Section V contains related work and
Section VI concludes this paper.

II. BACKGROUND

A. Watershed Delineation
The building blocks of watershed models are geographic

areas, called catchments. Each catchment is defined by its
boundary coordinates, and is analogous to nodes in a tree-
structured model that defines the hydrologic connectivity of
catchments along a river network. A watershed is a collection
of catchments that collectively define the area that drains to
some point on the land surface (the outlet of the watershed).
The computation that joins a set of catchments together, and
creates the set of boundary points for the watershed is called
the geometric union of the catchments (shown in Figure 2).
The result of watershed delineation is used in conjunction with
land use data and other types of geospatial data to create the
complete boundary of watershed for a given region.

The watershed delineation approach proposed by
Castronova and Goodall [10] is composed of several pipeline

Fig. 3. Architecture of WDCloud on AWS..

steps that manipulate and refine the NHD+ [6]. The highest
computation overhead is to process the geometric union
operations of catchments, which contribute to forming the
target watershed. The geometric union operation must examine
the catchments and merge intermediate boundaries of the
catchments to build the final boundary of the target watershed.
This process is time consuming due to the multiple passes
required to examine and determine each catchment’s effect on
the boundary of the entire set of catchments.

Watershed delineation can be performed by hydrologists or
other interested parties through a program such as GIS tools
[12, 26] on the scientists’ laptop or online watershed
delineation services. However, a drawback from using exiting
GIS tools is that these tools require several steps for the
hydrologists to manually process underlying hydrography data
to delineate the target watershed. Online water modeling
services (e.g. ESRI’s watershed delineation service.2), which
are similar with WDCloud, also have several disadvantages.
The disadvantages are black box nature of commercial
software service and restricted use of open source watershed
dataset, and high licensing cost. Another option offered by
USGS is StreamStats [7], which provides online watershed
delineation capabilities based on NHD. However, StreamStats
requires significant amounts of pre-computing steps, which can
delay the incorporation of enhancements in underlying NHD
data. Moreover, StreamStats is not currently available for all of
the lower 48 states.

Instead, WDCloud uses nationally consistent and publicly
available underlying data (NHD+) with very minimal
precomputing of these data required in the tool. Therefore,
enhancements to this dataset can be quickly incorporated into
WDCloud whereas other systems would require re-running
data pre-computing steps. This is true for both the ESRI’s
ArcGIS tool [3] and USGS Stream Stats to the best of our
knowledge. Furthermore, the typical manual delineation steps
of Digital Elevation Model (DEM) processing that most

2 https://www.argis.com

hydrologists would perform requires knowledge of GIS
software, many data processing steps to arrive at the final
watershed boundary of interest, and do not scale well to large
(or even regional) scale watersheds. However, WDCloud, only
requires the users to select a location on a map, effectively
removing data management from the user.

B. National Hydrograph Dataset
The National Hydrography Dataset (NHD) [5] is an openly

available vector and raster dataset. Specifically, we integrated
NHD+ [6], which a version of NHD that includes catchments
for each NHD reach feature, into WDCloud because it
possessed several desirable qualities. Namely, the dataset is
quality controlled and assured by the USGS and includes
catchment delineations that enforce flow along NHD reaches
and no flow across boundaries defined in the coarser scale
Watershed Boundary Dataset (WBD)3. This dataset therefore
provides a nationally consistent representation of the
hydrologic connectivity of the landscape.

NHD+ encompasses the entire contiguous United States, is
segmented into 21 HUC regions, and contains approximately 2
million unique catchments. HUC codes are used to segment
watersheds into groupings of 2, 4, 6, and 8 digit HUCs. 2 digit
HUCs are the largest watersheds and contain several 4 digit
HUCs. 4 digit HUCs contain 6 digit HUCs, and 6 digit HUCs
contain 8 digit HUCs. This provides a segmentation to NHD+
catchments that makes it possible to know, based on its HUC,
what 2 digit, 4 digit, 6 digit, and 8 digit HUC watershed that
catchment is within common geospatial dataset.

III. WDCLOUD DESIGN

A. Design of WDCloud on AWS
WDCloud is composed of six components as shown in

Figure 3. These six components are: 1) a web portal for
watershed delineation, 2) NHD+ database, 3) automated
catchment search module, 4) geometric union module, 5) exec-�

3 http://nhd.usgs.gov/wbd.html

ution time estimator, and 6) compute and storage resources on
AWS.

Web Portal for Watershed Delineation: This portal
provides a user interface to select an outlet coordinate for
delineating a target watershed. Once a hydrologist selects a
point of interest on the user interface on the portal and clicks
on a submit button, a process for watershed delineation starts.
This portal is also used to confirm the final delineation result
for the input coordinate. The final result will be displayed on
this portal and provided as several files, which are existing GIS
tool-compliant format such as Keyhole Markup Language [4].

NHD+ Database: This component contains NHD+ dataset
required for watershed delineation. Originally, NHD+ consists
of 21 distinct HUC region dataset (for contiguous U.S.). Each
HUC region dataset includes several raw-level hydrography
data such as DEM (Digital Elevation Mode) and flow
direction/ accumulations. Each dataset only covers limited
areas in U.S. based on HUC code. In order to facilitate the
delineation for the large-scale watershed (e.g. Mississippi), we
extract necessary data from NHD+ and store these data to
Microsoft SQL Server.

Automated Catchment Search Module: This module is
used to automatically collect relevant catchments for the target
watershed, which is distributed on multiple HUC regions in
NHD+. The details of this automated mechanism will be
described in Section III-B.

Geometric Union Module: This module performs the
geometric union operation to calculate the final result of the
target watershed. We proposed three strategies to improve the
performance of geometric union operation. The three strategies
will be described in Section III-C.

Execution Time Estimator: This component is used to
provide accurate estimation for delineation time of the target
watershed. We employ LLR (Local Linear Regression) for this
estimation. This estimator will be explained in Section III-D.

Compute and Storage Resources on AWS: WDCloud
uses Amazon Web Service (AWS) [1] cloud infrastructure for
its computing and data management environments. WDCloud
utilizes various configurations (e.g. a single VM or VM
cluster) and types of VMs based on the union strategy from the
geometric union module. These VMs performs actual delineat-

TABLE I. THREE ATTRIBUTES FOR AUTOMATED CATCHMENTS SEARCH
MECHANISM

Attributes Description

HydroSeq Unique hydrologic sequence number
assigned to each region in the dataset.

TerminalPath Hydrologic sequence number of the terminal
feature of the watershed network.

DnHydroSeq Hydrologic sequence number of
downstream.

ion process for the watershed. (most processes of watershed
delineation performed on VMs are related to geometric union
of catchments.) The VM resources on WDCloud are managed
by autoscaling mechanism, which will be described in Section
III-E. Moreover, WDCloud leverages Amazon S3 (Simple
Storage Service) [1] in order to store pre-compute data for
large-scale watershed and delineation results.

B. Automated Catchment Search Mechanism using NHD+
To automatically search and collect relevant catchments for

the target watershed, we propose an Automated Catchments
Search Mechanism (ACSM) using NHD+. For the ACSM, we
leverage three main attributes provided by NHD+. These three
attributes are TerminalPath, HydropSeq, and DnHydroSeq
[10], which are described in Table I.

Algorithm 1 describes the details of the ACSM. The ACSM
starts with finding a proper HUC region dataset (start HUC
region) in NHD+ for an outlet coordinate (input from a user) of
the target watershed (ln 1). Based on the coordinate and the
HUC region dataset for the input outlet, this automated
mechanism finds TerminalPath for the watershed (ln 2). Using
TerminalPath, the ACSM finds catchments for the target
watershed in that HUC region. The ACSM, then, finds
HydropSeqs (multi region hydroseqs at ln 5) in the HUC
region, which encompass the target watershed’s hydrological
flow information with other HUC regions in NHD+. If multi
region hydroseqs exist, this means that the target watershed is
also distributed over other HUC regions in NHD+ (ln 6).
Otherwise, the target watershed is composed of catchments in a
single HUC region (start HUC region).

Fig. 4. Data-reuse Example – E and F are pre-defined regions. The black
catchment is aggregated. Since the gray catchment flows into the black
catchment, the gray catchment and its watershed, labeled G, must also be
collected.

By leveraging multi region hydroseqs, the ACSM finds all
relevant other HUC region dataset by comparing DnHydroSeq
in other HUC regions with multi region hydroseqs (ln 7). The
ACSM searches for all relevant HUC regions and finds
catchments in those regions by using TerminalPath (ln 10).
Once the ACSM completes to explore all relevant HUC
regions, all catchments to form the target watershed are
collected.

C. Performance Improvement Strategies for Geometric Union
Once the ACSM collects all relevant catchments for the

target watershed, the watershed delineation performs geometric
union operation (Figure 2 in Section II-A) using all the
catchments to build a single catchment representing the
boundary of the target watershed. This geometric union is the
most time consuming operation in the watershed delineation.
To reduce the execution time for the geometric union
operation, we employ three strategies: 1) data-reuse, 2)
parallel-union, and 3) MapReduce.

Data-Reuse: The general architecture for data-reuse is to
pre-compute catchment unions. When a stored point is
accessed, instead of a full traversal and merge of all the
relevant catchments, traversal halts and a single catchment is
read. Precomputation and storage eliminates time spent
traversing the catchment network and limits the count of
catchments passed to the union operation. Although, this
strategy has similarities with caching, it is much different.
Data-reuse provides a guaranteed performance enhancement
unlike caching. Data-reuse does not require a specific point of
interest to be already selected by a user in order for that point
to achieve a performance increase. Data-reuse is an offline
optimization that targets the large-scale and multi-region
watersheds such as the Mississippi watershed.

By pre-computing every point, the union computation
would require a single file read operation, greatly improving
runtime performance. This level of pre-computation is
infeasible because of two reasons. First, the time required to
pre-compute every point would cause a delay in the adoption
of new data sources. In other words, if new data was desired by
the hydrologists, they would be forced to wait weeks if not
months to actually work with their data. The other is the cost of
storing, possibly 1-2 Gigabytes, each of the 2 million
catchments in NHD+, which quickly removes some of the cost
benefit our system exhibits over other systems.

By utilizing watershed domain knowledge, we create a
data-reuse mechanism that efficiently stores pre-computed
watershed data by targeting all points requiring multi-region
results. This provides great improvement at very limited cost in

terms of both time and money. In NHD+, the hydrology data
for the contiguous U.S. is divided into 21 distinct regions. Each
region can have a few catchments that connect to another
region. Data-reuse stores results that span the regional
boundaries, leveraging the natural segmentation of the data. By
storing these multi-region watersheds, the performance is
benefited by eliminating multiple queries to aggregate the
multi-region catchments and the fact that this allows most of
the work to be computed offline. Figure 4 shows an example
for the multi-region data-reuse strategy. E and F are regions
defined as part of the NHD+ dataset. The gray catchment in F
flows into the black catchment in E. This means that when the
black catchment is collected, the gray catchment must also be
collected and the watershed of the gray catchment is shown as
the area encompassed by the dotted line, labeled G. Data-reuse
pre-computes the watershed G and stores it, so it can be
retrieved when the black catchment is collected. The data-reuse
limits traversal of the catchments and the number of
catchments sent to the union by targeting large watersheds.
This strategy has a low memory cost since it consists of storing
only 16 files (total file size is 106 MB).

Fig. 5. Parallel-Union subsystem.

Parallel-Union: The second strategy is parallel-union that
concurrently processes the geometric union via threading.
Figure 5 shows the architecture of the parallel-union
subsystem. The parallel-union starts with receiving a collection
of all relevant catchments from the ACSM (described in
Section III-B). The collected catchments are sent to the Parallel
Task Creation Unit (PTCU). The PTCU partitions the
catchments into k subsets evenly. The PTCU, then, initiates k
parallel tasks and sends each subset of catchments to each task
that performs the 1st union operation on a subset of the
catchments, and then sends its interim union result of
catchment to the Interim Catchment Union Unit (ICUU). Once
all parallel tasks have sent their interim results to the ICUU, the
k interim results of catchments are merged by 2nd union
operation to create the final result for the target watershed.

A key issue of parallel-union is how to choose the proper
number of parallel tasks for the watershed delineation. A
common approach is to create the same number of tasks with
the number of cores on a machine. (e.g. 4 parallel tasks for 4
core machine.) However, this approach does not necessarily
work on virtualized environments such as VM on public
clouds. In order to determine the proper number of parallel
tasks, we will show variable evaluation results in Section IV.

The parallel-union approach was essentially designed to
minimize the execution time of the watershed delineation on
multi-core single machine. Even though we can leverage

various VM types offered by AWS, there are limitations4 to
minimize the execution time of watershed delineation by the
parallel-union strategy because of the physical limitations of
the HW specifications. Leveraging a single machine is often
insufficient for a certain scale of watersheds. For those
largescale watershed, we use multiple machines via
MapReduce.

MapReduce: MapReduce is a common distributed
programming paradigm consisting of two phases [14]. The first
phase maps the data to an intermediate format. The second
phase reduces the intermediate data to a final output. Although
AWS offers on-demand MapReduce services such as EMR
(Elastic MapReduce)5, we pursue an Apache Hadoop6, an open
source implementation of MapReduce, cluster on AWS. We
choose not to use EMR because this service limits our
debugging capabilities for MapReduce jobs.

Hadoop allows us to distribute data and computation across
several nodes. Hadoop parallelizes operations by creating
containers that run the mapper and/or reducer. These containers
consist of allocated virtual cores and memory. Also, Hadoop
offers HDFS (Hadoop Distributed File System), which can
redundantly store data across the cluster. HDFS partitions the
data to distribute the computation across the clusters nodes and
to stream as input into the map procedures. This partitioning
has an impact on the performance of this system, which will be
described in a later section.

This process of map and reduce intuitively resembles our
system’s current parallel-union model. The mapping phase of
the geometric union is similar with the PTCU and the parallel
tasks themselves shown in Figure 5. The reduce phase is
similar with the ICUU. This strategy utilizes a Hadoop cluster
on AWS to distribute the geometric union to multiple virtual
machines. This allows us to achieve much more performance
improvement than using the parallel-union on a single VM.
Thus, when the collection of catchments for the target
watershed is too large to be unioned in the required time, they
are sent to the Hadoop cluster where they are processed with
MapReduce and the result is then returned.

TABLE II. STRATEGY SELECTION CRITERIA FOR CATCHMENT UNION
PROCESSING

Strategy # of Catchments # of VMs

Data-Reuse Multi-HUC region case 1

Parallel-Union # of Catchments < 25K 1

MapReduce # of Catchments � 25K > 1

Strategy Selection Criteria: Three performance
improvement strategies of WDCloud target different facets of
the performance and therefore are not required for every input.
Table II shows the strategy selection criteria to select a proper
approach for union operation of catchments.

The data-reuse strategy is only utilized when a watershed
crosses a NHD+ regional boundary. This is determined during

4 m1–m3 instance types in AWS normally have 1 to 8 of virtual CPU cores on
a single VM [1].
5 http://aws.amazon.com/elasticmapreduce/
6 http://hadoop.apache.org

catchment aggregation and its use largely depends on the input
and catchments involved in the watershed.

The parallelization-based approaches (e.g. parallel-union
and MapReduce) can be used in either single machine or a
multiple number of machines. The parallel-union approach will
be used when a single VM can provide the desired
performance (e.g. total delineation time is less than 20
minutes). And MapReduce approach is for the case that a
single VM cannot provide the desired runtime performance.
Thus, the watershed delineation system automatically
determines either approach based on the number of catchments
to be unioned. If the number of catchment is less than 25K, the
system assigns the request to a single VM on AWS and uses
the parallel-union. Otherwise the system sends this request to
Hadoop cluster on AWS for MapReduce operation.

Fig. 6. Local Linear Regression-based execution time estimator for

watershed delineation

D. Execution Time Estimation for Watershed Delineation
As we pointed out in Section I, an accurate estimation of

the execution time for the watershed delineation is an
important issue to improve the scientists’ productivity for their
research. To estimate execution time of the delineation, we use
LLR (Local Linear Regression) [20] based execution time
estimator, which is investigated by our previous work [23].
Figure 6 shows the procedure of LLR estimator. This estimator
takes a coordinate for outlet of the target watershed as its input
parameter. The LLR estimator collects similar execution
samples (from the past execution history) with the input
coordinate using kNN method. kNN methods uses three
features:

· The number of catchments for the target watershed.
· Geographical closeness to the input coordinate.
· Execution environments (e.g. VM type).
The next step is to create a simple linear regression model

based on the collected samples from the kNN. The parameters
(� and � represent the intercept and slope of the linear model)
for the linear regression model can be calculated by
minimizing the objective function in equation-1. In equation-1,
x0 represents the outlet coordinate for the watershed and V
means the set of similar samples with the outlet coordinate.

LLR estimator, then, provides the estimated execution time
(f(x0)) for the input coordinate by the linear regression model
obtained by the previous step.

E. VM Resource Management: Autoscaling
VM resources used by WDCloud are managed by an

autoscaling mechanism. The autoscaling mechanism is
designed to automatically manage both under- and over-
provisioning of VMs for WDCloud. Note that autoscaling of
WDCloud is different mechanism from “Auto Scaling” offered
by AWS [1]. The under-provisioning of VM resources can
result in poor performance (e.g. slow response time) of
WDCloud due to the lack of computing resources. Over-
provisioning can hurt the cost-efficiency of WDCloud due to a
number of idle VMs.

Algorithm 2 shows the scaling-up mechanism of the

autoscaling. The scaling-up decision is triggered when a new
delineation job (jobnew) arrives. The autoscaling, then, obtains
the information of currently running VMs (ln 1). The next step
is that the autoscaling calculates the estimated job completion
time on each running VM by the sum of estimated execution
times of all existing jobs in work queue on the VM and the
estimated execution time of jobnew (ln 5). For this step, the
autoscaling collaborates with LLR execution time estimator in
Section III-D. The autoscaling compares the estimated
completion time of the new job (jobnew) with a threshold (ln 6),
which is defined by the user (e.g. 30 minutes or 1 hour). If the
estimated completion time of the new job is earlier then the
threshold, the autoscaling stores the VM into a candidate VM
list (CandidateVMs) for the job execution (ln 7). If existing
VMs can completes the jobnew within the threshold (ln 12), the
jobnew will be assigned to a VM that offers earliest completion
of jobnew (ln 13–14). Otherwise, the autoscaling creates a new
VM (scaling-up) and assigned the new job to the new VM (ln
16–17).

For the scaling-down operation (Algorithm 3), the
autoscaling uses the billing boundary-based VM scaling-down.
Because WDCloud runs on AWS, the autoscaling uses the
hourly billing bound of AWS (ln 5). A key step of the scaling-

down operation is that a VM will be terminated when the
VM’s running time is approaching the billing bound, the VM’s
status is idle state, and the Queue of the VM is empty (ln 5–6).

IV. EVALUATION

In the evaluations of WDCloud, we focus on two main
aspects of WDCloud, which are the performance improvement
via three strategies (Section III-C) and the accuracy of the
execution time estimation via LLR estimator (Section III-D).

A. Performance Improvement via Three Strategies
Data-Reuse: The main focus of data-reuse was the specific

targeting of the largest watersheds (e.g. the Mississippi), those
spanning multiple regions. By leveraging the segmentation of
the NHD+, data-reuse achieves a 111x speedup as shown in
Table III. This paragraph discusses about this large speedup.

TABLE III. SPEED-UPS BY DATA-REUSE FOR THE MISSISSIPPI
WATERSHED

Commodity Laptop Data-Reuse Speed-Up

10+ hours 5.5 minutes 111x

The Mississippi watershed of 1,100,000+ catchments
originally required 10+ hours to perform the geometric union.
That same example required 5.5 minutes to union when
utilizing the data-reuse strategy. To explain this large speed-
ups, which only required the storage of 106 MB of pre-
computed data, we describe an example execution. Our
Mississippi example aggregates a total of 1,117,172
catchments. Once the data-reuse is used, the Mississippi
example aggregates only 29,137 catchments. This equates to
pre-computing the union of 1,088,035 catchments, which is
97% of the original catchments. This 111x speedup exceeded
our initial estimates (e.g. less than 20 minutes) and resolved the
largest class of watersheds, but several watersheds of
approximately 100K to 250K catchments that took 4+ hours to
delineate still remained. These large watershed will be dealt
with other two parallelization strategies.

Parallel-Union: This strategy was designed to maximize
the performance of a single VM, and is used for small- and
medium-scale watersheds (# of catchments < 25K). A key
issue of the parallel-union is how to choose the proper number
of parallel tasks for the watershed delineation. To determine
the proper number of parallel tasks, we executes four example
watersheds with 1 to 32 tasks on different types of VMs on
AWS. These four watersheds contains less than 25K
catchments, and they are in Pennsylvania (140 catchments),

Fig. 7. Normalized geometric-union time of watershed delineation by parallel-union strategy on four types of VMs.

South Carolina (155 catchments), Virginia (430 catchments),
and Tennessee (23K catchments). We also used four different
types of general purpose VMs (e.g. m1 instances) [1] for this
evaluation. The results for the parallel-union evaluation are
shown in Figure 7, and all results are normalized to the
geometric union time from non-parallelization case (a single
task). Back bold line in all graphs is an average of normalized
geometric union time of four watersheds by the parallel-union
strategy. The results show that, on average, the parallel-union
provides the best performance improvement when WDCloud
creates 8–32 tasks for the geometric union. (3x speed up on the
medium VM, 3.1x speed up on the large VM, 3.6x speed up on
the xlarge VM, and 2.9x speed up on the 2xlarge VM.) By
using the parallel union strategy, we can complete the
delineation for the four watersheds with 28–150 seconds (8
parallel tasks on 2xlarge instance). Without the parallel-union,
these four watershed take approximately 500–3200 seconds
(single tasks on medium instance). These results implies
WDCloud with the parallel-union can handle small- and
medium-scale watershed (# of catchments < 25K), but this
strategy is not sufficient to obtain enough performance
improvement for large-scale watersheds (# of catchments �
25K). Those large-scale watersheds will be handled by the
MapReduce strategy.

MapReduce: To show the performance improvement by
the MapReduce strategy, three large-scale watersheds on
Hadoop cluster are examined. These three large-scale
watersheds are located in Maine (66K catchments), Kentucky
(107K catchments), and South Dakota (253K catchments). In
this evaluation, WDCloud uses 4 to 32 cores of Hadoop
cluster7. The evaluation results by the MapReduce strategy are
shown in Figure 8. As shown in the graph, by leveraging 32
core Hadoop cluster, WDCloud can achieve 7x of speed-ups

7 4 cores of Hadoop cluster uses 4 medium VMs (4 x 1 core). 8 cores of
Hadoop cluster has 4 large VMs (4 x 2 cores). 16 cores of Hadoop cluster
consists of 4 xlarge VMs (4 x 4 cores). 32 cores of Hadoop cluster is
composed of 4 2xlarge VMs (4 x 8 cores).

for Maine watershed (66K), 11x of speed-ups for Kentucky
watershed (107K), and 21.2x of speed-ups for South Dakota
watershed (253K). These results also show that the more
catchments a watershed includes, the higher speed-ups
WDCloud can achieve. For the South Dakota watershed, the
delineation takes 4.2 hours with no parallelization, but the
same delineation takes only 11.8 minutes with 32 core Hadoop
cluster.

Fig. 8. Speed-up for geometric union of large-scale watershed by
MapReduce.

B. Execution Time Estimation for Watershed Delineation
The next evaluation is to measure the performance of LLR

estimator of WDCloud for predicting the execution time of
watershed delineation. We employ prediction accuracy and
MAPE (Mean Absolute Percentage Error) for this evaluation
and these metrics are shown in equation (3)–(4). A higher
result of prediction accuracy means better, and lower result of
MAPE indicates better performance.

TABLE IV. OVERALL EVALUATION RESULTS FOR EXECUTION TIME
ESTIMATION

 LLR Estimator kNN mean
Prediction
Accuracy 85.6% 65.7% 42.8%

MAPE 0.19 0.93 1.97

As the baselines of this evaluation, we use kNN [20] and
mean [25]. For the execution time estimation, kNN uses three
features that are 1) geographical closeness to the target
watershed, 2) the number of catchments, and 3) the type of VM
instances, which are the same with LLR estimation.

We measures 420 random coordinates (20 random
coordinates of watershed outlets x 21 HUC regions) for
execution time estimation. The overall results are shown in
Table IV. As shown in Table IV, LLR estimator outperforms
other two approaches. The prediction accuracy of LLR
estimator is 85.6%, which is 19.9% and 42.8% higher than
kNN and mean-based estimator. The MAPE result of LLR is
0.19, which is 4.9x and 10.4x lower (better) than others.

Moreover, to show the performance of LLR estimator that
can precisely estimate the delineation time for watershed
outlets on all 21 HUC regions in NHD+, we show the
estimation results of three estimators based on each HUC
regions. Figure 9 shows the estimation results on all 21 HUC
regions. For the prediction accuracy on all 21 HUC regions
(Figure 9(a)), LLR estimator shows over 80% of prediction
accuracy for all 21 regions. For the MAPE results (Figure
9(b)), LLR estimator has accurate MAPE results, which are less
than 0.23, except for only two HUC regions (08 and 13 HUC
regions). These results show that LLR estimator provides
reasonable estimation for the execution time of the watershed
delineation, and can provide precise estimation results for
almost all HUC regions in NHD+.

V. EVALUATION

Geospatial data analysis research has benefited from the
technical advancements of cloud computing. Several works
have shown the clouds ability to provide performance
improvements to these data and compute intensive
applications.

A system to increase the performance of watershed
calibration by utilizing the cloud was designed by Humphrey et
al [22]. This system reduced an 11 hour computation to a 5
minute computation by using cloud computing. They focused
on core utilization and the parallelization of the application;
instead we also focus on using specific characteristics of the
application (e.g. Data-reuse) to improve the runtime without
such large compute clusters. Furthermore, we incorporate
MapReduce to distribute our computation instead of
performing it manually.

Caching is similar in style to the data-reuse strategy of this
work. Chiu et al [13] proposed a strategy for caching in the
cloud. This caching is most useful for the results of a Service-
Oriented Application (SOA), but not useful for our applications
storage of intermediate data formats. The data-reuse is similar
to caching, but not equivalent because the pre-computed data
will never be swapped while the system is online.

Several works [8, 18, 27] utilize MapReduce to enhance
their GIS and spatial data analysis applications. Hadoop-GIS
[8] was designed to improve spatial query processing
capabilities of GIS via adopting MapReduce. Hadoop-GIS
supports several spatial enhancement capabilities such as
spatial data partitioning for parallel processing, and spatial
query processing. Hadoop-GIS is also integrated with Hive.
SpatialHadoop [18] is a low-level extension of Hadoop and
supports spatial indexing for its input dataset to facilitate the
spatial data processing. Dart [27] is another type of GIS on
Hadoop. Dart is collaborating with HBase and provides a
hybrid table schema to store spatial data in HBase. Dart utilizes
public cloud infrastructure such as Amazon EC2. These
research are relevant to our work, but our work is different
because we employ MapReduce as a part of our three strategies
to improve the performance of geometric union in the
watershed delineation process.

Alencar et al [9] have reported an on-going research project
to employ cloud infrastructure and capabilities to watershed
research. Their work is to build a cloud-based collaborative
platform for watershed research. A difference from our work is
that they focus on giving collaborative capabilities (e.g.
hydrology data sharing) for stakeholders (e.g. scientists and
decision makers) to watershed research system via
CometCloud [16]. WDCloud does not consider having
collaborative capabilities for watershed delineation. Another
difference is that it is unclear which raw dataset they use for
their project.

VI. CONCLUSION

Watershed delineation is a process to determine the area
draining to a point on the land surface. This plays a critical role
for hydrologic and water resources research because watershed
delineation is often the first step of an analysis. However,
existing watershed delineation tools are insufficient to support
hydrologists because they have not kept pace with new datasets
that allow for national-scale watershed delineation over the
web without requiring extensive data preprocessing steps.
Watershed delineation applications lack the capabilities to fully
leverage scalable and high performance computing
infrastructure (e.g. public cloud), and provide predictable
performance for the delineation tasks.

To solve these problems, this paper reports on WDCloud,
which is a system for large-scale watershed delineation on
AWS. WDCloud employed three key approaches:

· An automated catchment search mechanism for NHD+,
which is a public watershed dataset from USGS.

· Three performance improvement strategies: Data-reuse,
parallel-union, and MapReduce.

· LLR execution time estimator for watershed delineation.
Our evaluations on WDCloud mainly focus on 1) the
performance improvement for watershed delineation via three
strategies and 2) the prediction accuracy for delineation time
by LLR estimator. In terms of the speed up of watershed
delineation tasks, WDCloud achieves 111x speed up for the
Mississippi watershed (the largest watershed in U.S.) through
the data-reuse strategy, up to 21x speed up for large-scale
watershed via MapReduce, and 18x speed up for medium- and

small-scale watershed by using the parallel-union approach. Moreover, the LLR estimator of WDCloud provides the relia-

Fig. 9. Execution time estimation results of three estimators on 21 HUC regions.

ble execution time estimation of watershed delineation with
85% of prediction accuracy. This result is 23%-43% better
than other state-of-the-art estimation approaches.

REFERENCES
[1] Amazon Web Services. http://aws.amazon.com.

[2] Microsoft Azure. http://azure.microsoft.com.
[3] ESRI – ArcGIS Watershed. http://www.arcgis.com/home/item.html?

id=8e48f6209d5c4be98ebbf90502f41077

[4] Wikipedia – Keyhole Markup Language.
http://en.wikipedia.org/wiki/Keyhole_Markup_Language

[5] National Hydrography Dataset – USGS. http://nhd.usgs.gov
[6] NHDPlus Version 2 – Horizon Systems.

http://www.horizonsystems.com/nhdplus/NHDPlusV2 home.php

[7] USGS – StreamStats. http://water.usgs.gov/osw/streamstats/
[8] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz. Hadoop-GIS: A

High Performance Spatial DataWarehousing System over Mapreduce. In Proc.
VLDB Endowment, 2013.

[9] P. S. C. Alencar, D. D. Cowan, F. McGarry, and R. M. Palmer. Developing a
Collaborative Cloud-based Platform for Watershed Analysis and Management. In
Proc. IEEE CollaborativeCom, 2014.

[10] A. M. Castronova and J. L. Goodall. A Hierarchical Network-based Algorithm for
Multi-Scale Watershed Delineation. Computers & Geosciences, 72, 2014.

[11] C. L. Chang. The Impact of Watershed Delineation on Hydrology and Water
Quality Simulation. Environment Monitoring and Assessment, 148, 2009.

[12] D. Chen, S. Shams, C. Carmona-Moreno, and A. Leone. Assessment of open
source GIS software for water resources management in developing countries.
Journal of Hydro-environment Research, 4, 2010.

[13] D. Chiu, A. Shetty, and G. Agrawal. Elastic Cloud Caches for Accelerating
Service-Oriented Computations. In Proc. SC, 2010.

[14] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In Proc. USENIX OSDI, 2004.

[15] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The Cost of Doing
Science on the Cloud: The Montage Example. In Proc. SC, 2008.

[16] J. Diaz-Montes, M. AbdelBaky, M. Zou, and M. Parashar. Comet-Cloud: Enabling
Software-Defined Federations for End-to-End Application Workflows. IEEE
Internet Computing, 19, 2015.

[17] D. Djokic and Z. Ye. DEM Preprocessing for Efficient Watershed Delineation. In
Proc. ‘99 ESRI Intl. User Conference, 1999.

[18] A. Eldawy and M. F. Mokbel. SpatialHadoop: A MapReduce Framework for
Spatial Data. In Proc. 31th IEEE ICDE, 2015.

[19] M. B. Ercan, J. L. Goodall, A. M. Castronova, M. Humphrey, and N. Beekwilder.
Calibration of SWAT models using the cloud. Environmental Modeling &
Software, 62, 2014.

[20] T. Hastie, R. Tibshirani, and J. Friedman. The Element of Statistical Learning:
Data Mining, Inference, and Prediction. 2011.

[21] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, and J.
Good. On the Use of Cloud Computing for Scientific Workflows. In Proc. IEEE
eScience, 2008.

[22] M. Humphrey, N. Beekwilder, J. L. Goodall, and M. B. Ercan. Calibration of
Watershed Models using Cloud Computing. In Proc. IEEE eScience, 2012.

[23] I. K. Kim, J. Steele, Y. Qi, and M. Humphrey. Comprehensive Elastic Resource
Management to Ensure Predictable Performance for Scientific Applications on
Public Iaas Clouds. In Proc. 7th IEEE/ACM UCC, 2014.

[24] S. Kopp. Custom Watersheds at the Click of a Button: Watershed Delineation in
ArcGIS Online. ArcGIS Resources ESRI, Aug, 13, 2013.

[25] W. Smith, I. Foster, and V. Taylor. Predicting Application Run Times with
Historical Information. In Proc. JSSPP, 1998.

[26] M. P. Strager, J. J. Fletcher, J. M. Strager, C. B. Yuill, R. N. Eli, J. T. Petty, and S.
J. Lamont. Watershed analysis with GIS: The watershed characterization and
modeling system software application. Computers & Geosciences, 36, 2010.

[27] H. Zhang, Z. Sun, Z. Liu, C. Xu, and L. Wang. Dart: A Geographic Information
System on Hadoop. In Proc. IEEE Cloud, 2015.

