Preliminary version. Final version to appear in IEBig Data in the Geosciences
Workshop. Oct 29, 2015, Santa Clara, CA, USA.

. An End to End System for Large-Scale
Watershed Delineation on Cloud

In Kee Kimi, Jacob SteeleAnthony M. Castronovdy Jonathan L. Goodajland Marty Humphrey

"University of Virginia, Charlottesville, VA, 22908k2sb, jss2zb, goodallg@virginia.edu, humphrey@icginia.edu
*Utah State University, Logan, UT, 84322, tony.aastva@usu.edu

Abstract—Watershed delineation is a process to compute the
drainage area for a point on the land surface, whit is a critical
step in hydrologic and water resources analysis. Hever,
existing watershed delineation tools are still indficient to
support hydrologists and watershed researchers du# lack of
essential capabilities such as fully leveraging Sedle and high
performance computing infrastructure (public cloud), and
providing predictable performance for the delineaton tasks. To
solve these problems, this paper reports owDCloud which is a
system for large-scale watershed delineation on plib cloud. For
the design and implementation ofWDCloud, we employ three
main approaches: 1) an automated catchment searchaohanism
for a public data set, 2) three performance improveent
strategies (Data-reuse, parallel-union, and MapRedte), and 3)
local linear regression-based execution time estirta for
watershed delineation. Moreover, WDCloud extensively utilizes
several compute and storage capabilities from Amazo Web
Services in order to maximize the performance, scability, and
elasticity of watershed delineation system. Our elaations on
WDCloud focus on two main aspects ofWDCloud the
performance improvement for watershed delineation ia three
strategies and the estimation accuracy for waterstiedelineation
time by local linear regression. The evaluation radts show that
WDCloud can achieve 18x—111x of speed-ups for delineatingy
scale of watershed in the contiguous United States compared
to commodity laptop environments, and accurately pedict
execution time for watershed delineation with 85.6% of
prediction accuracy, which is 23%-43% higher than other state-
of-the-art approaches.

I. INTRODUCTION

Analysis of regional-scale watershed systems iscatito
understand the impact of floods, droughts, and m@a#ution.
Watershed modelers use hydrographic data in simuolat
models to better understand potential impacts e$ghevents
and testing mitigation strategies [19, 22]. Thetitg point of
many hydrologic analyses is defining a watershathtary for
the area of interest, which is called watershethdation [10].
Watershed delineation plays an important role idrblpgic
analysis because it defines the scope of the nmgdebmain,
thereby impacting all further analysis and modebiteps [11].
There are national-scale data available for peifggm
watershed delineation, but few convenient tools @k to
leverage these data for simple and quick waterdieédeation
for any point in the contiguous United States.

With advancements in computing technology, scientif
research has become increasingly reliant on coripogd
tools to quickly analyze large amounts of data anovide

useful information to researchers. Unfortunatdhg tlesign of
scientific applications does not necessarily gilizhese
advances. For example, on commodity desktop hamjwar
watershed delineation can take several hours fogela
watersheds. Current approaches also rely heavilyGoa
desktop software, which can have a steep learnimgecfor
those unfamiliar with the software and tedious gaé¶tion
steps to arrive at the desired watershed boundagseit [17,
24]. This high cost and low reward situation isusmmecessary
burden on hydrologists and watershed researcheistramed

to modeling smaller watersheds that be easily
accommodated by available software options.

can

Fig. 1. Mississippi Watershed. This is the largest watetsimethe United
States, and is composed of 1,100,000+ catchmehtshwre distributed over
10 distinct regions in NHD+. (Courtesy of Unitedat®t Geological Survey
[5]).

Many approaches have been proposed for addredsing t
challenge of watershed delineation at a nationales¢3, 7,
10]. Castronova and Goodall [10] proposed an ambrdhat
leveraged pre-computed data from the National Hydnohy
Dataset Plus (NHD+) program [5, 6]. An advantagetho$
approach is that it did not require additional datee-
computation steps, which are common for many large
watershed delineation algorithms. However, the aagh did
not scale well to large watersheds (e.g., the Igkgspi
watershed in Figure 1) and resulted in long exeautime for
delineating such a large watershed. Long execuiioe of
large watershed delineation in the approach isagléo the
size of underlying data. For example, the MissfsEsip
watershed consists of 1,100,000+ NHD+ catchmerti;hnis
more than 50% of all catchments in United StateS(las
approximately 2 million NHD+ catchments). The algon
requires merging of these individual catchments mtsingle
watershed polygon, and execution time of such gelacale
watershed delineation is simply dominated by tim@erform
this geometric union operation of catchments.

Estimated computation time to delineate the entire

Mississippi watershed
commodity laptop hardware using the CastronovaGoadall
algorithm. This does not lend itself to an interaetsystem
where the majority of watersheds can be delineard
returned while the user waits. While achieving tiisl for the
most extreme cases such as the Mississippi watkisheery
challenging without significant data pre-processihgjineation
time of 10 minutes or less is desirable for anrenlivatershed
delineation tool. Therefore, the scientists neetw software
architecture on HPC infrastructure for the watedshe
delineation process, which can dramatically redube
execution time of watershed delineation. In terfbulding a
HPC (High Performance Computing) infrastructure for
watershed delineation, a local HPC cluster is ofezmnically
and financially infeasible for hydrologists. Thisyeraging the
public clouds (e.g. Amazon Web Services [1] and rivioft
Azure [2]) as the HPC infrastructure is more dédeadue to
the elasticity, scalability and cost efficiency pdiblic cloud
[15, 21].

Moreover, another challenge of watershed delineaiso
highly variable execution time of delineation tadlesed on
input coordinates. When a scientist requests aicphat
coordinate for delineation, the scientist may nobw how
long the delineation task will take. This is oftproblematic
when the scientist expects an instantaneous resgorss large
watershed request. Therefore, to improve the sstent
experience, a watershed delineation system shaildbke to
estimate and provide the execution time of watetshe
delineation with high accuracy.

To solve the problems, we introdudéDCloud an end-to-
end system for large-scale watershed delineatiorclond.

WDCloud employs following approaches; 1) an automated
catchments search mechanism using NHD+ (National

Hydrograph Dataset Plus), 2) various performance
improvement strategies, and 4) a local linear egoa (LR)
based execution time estimation for watershed eation. The
automated catchments search mechanism is desigradtbi
scientists to delineate large-scale and multi-regiatersheds.
We also leverage three strategies to reduce thatidnrof
watershed delineation. We employ a data-reuse egirat
MapReduce [14], and parallel-union depending onsttae of

watershedsWDCloud employs the data-reuse to delineate

extremely large-scale and multi-region watersheglg. (the
Mississippi watershed)WDCloud also uses MapReduce for
large-scale watersheds, and leverages the pauaileh for
medium- and small-scale watershed#Cloud automatically
chooses a proper strategy based on the size akthested
watershed.LLR [20] is used to accurately estimate the
execution time of watershed delineation requestsn fithe
scientists. We implemem/DCloud on Amazon Web Services
(AWS) with extensive use of various capabilitiesnir AWS
such as diverse types of virtual machines (VM)oscdling,
and cost efficient S3 storage services in ordamigrove the
performance of the system.

1 NHD+ [5, 6] is the most recent public hydrograpttadat provided by
United State Geological Survey (USGS). NHD+ cordaiessential
information for watershed and water resource reseauch as stream flows
and directions.

is approximately 10+ hours on

Geometric
Union

Fig. 2. Example of geometric union for catchments.

Our evaluations focus on two main aspectdMidCloud
the speed up of computation time for watershedndation
tasks via three performance improvement strateginad, the
accuracy of delineation time estimation WBR. In terms of
the speed up of watershed delineation taskd)Cloud
achieves 111x speed up for the Mississippi waterstiee
largest watershed in U.S.) through the data-retra¢egy, up
to 21x speed up for large-scale watershed via Mdp&& and
18x speed up for medium- and small-scale waterblyaasing
the parallel-union approach. Moreover, thel R-based
delineation time predictor ofVDCloud provides the reliable
estimation of delineation time with 85.6% of predatin
accuracy. This result is 23%—-43% higher than ogtate-of-
the-art estimation approaches suchkBdN [20] and mean-
based estimation [25].

The contributions of this paper are:

We introduceWDCloud that allows the hydrologists to
delineate any scale of watershed in U.S. with faste
execution time.

We introduce three performance improvement
strategies (data-reuse, MapReduce, and parallekuni
which enabléeWDCloud to achieve 18x—111x speed up
of watershed delineation as compared to commodity
laptop hardware.
We use LLR-based execution time estimator that
provides predictable performance of watershed
delineation requests.
The rest of this paper is organized as follows:tiSedl
gives background of this work. Section Il highlighthe
design ofWDCloud and main approaches. Section IV is the
evaluation and discussion. Section V containsedlatork and
Section VI concludes this paper.

A. Watershed Delineation

The building blocks of watershed models are geddcap
areas, called catchments. Each catchment is defiyeits
boundary coordinates, and is analogous to nodes free-
structured model that defines the hydrologic cotiviég of
catchments along a river network. A watershed ¢slkection
of catchments that collectively define the area tirains to
some point on the land surface (the outlet of tlatevghed).
The computation that joins a set of catchmentsthaye and
creates the set of boundary points for the watershealled
the geometric union of the catchments (shown irufeg).
The result of watershed delineation is used inwuetjon with
land use data and other types of geospatial datactite the
complete boundary of watershed for a given region.

The watershed delineation approach proposed by
Castronova and Goodall [10] is composed of sey@paline

BACKGROUND

Relevant Catchments

A point of

. Automated Catchment
interest

Search
(Section TTI-B)

e

3

Hydrologist

‘Watershed
Portal !

1 A collection of
! Catchments
I

Execution Time

Estimation Result LLR Estimator

l

Result
Check

Parallel-Union ‘ MapReduce

Samples for
Estimation

[

1
1
I
1
1
| ‘Watershed Delineation
I
1
1
1

Execution History

Execution Time Estimator
(Section III-D)

Results Portal

S3 Bucket for Data-Reuse

S3 Bucket for Storing Final Results

S3 Storage Service on AWS

Delineation
Results

steps that manipulate and refine the NHD+ [6]. THighest
computation overhead is to process the geometrionun
operations of catchments, which contribute to foignithe
target watershed. The geometric union operatiort exemine
the catchments and merge intermediate boundarietheof
catchments to build the final boundary of the tangatershed.
This process is time consuming due to the multipdeses
required to examine and determine each catchmefi€st on
the boundary of the entire set of catchments.

Watershed delineation can be performed by hydrstegir
other interested parties through a program sucl&stools
[12, 26] on the scientists’ laptop or online wabted
delineation services. However, a drawback from gigriting
GIS tools is that these tools require several stepsthe
hydrologists to manually process underlying hydapdyy data
to delineate the target watershed. Online water aligl
services (e.g. ESRI's watershed delineation sefyicehich

VM Pool on AWS: !
Managed by
Autoscaling
Section I1I-E)

Assign
delineation
request to
Hadoop Cluster|

Assign
delineation
request to a
Single VM

NHD+DB
(SQL Server)

! Hadoop
Cluster

|

Hydrography Data T

. Architecture oWDCloud on AWS..

hydrologists would perform requires knowledge of SGI
software, many data processing steps to arrivehatfinal
watershed boundary of interest, and do not scaletavéarge
(or even regional) scale watersheds. HowewédCloud, only
requires the users to select a location on a midgctieely
removing data management from the user.

B. National Hydrograph Dataset

The National Hydrography Dataset (NHD) [5] is areoly
available vector and raster dataset. Specifically,integrated
NHD+ [6], which a version of NHD that includes dateents
for each NHD reach feature, int&/DCloud because it
possessed several desirable qualities. Namelydé#taeset is
quality controlled and assured by the USGS anduded
catchment delineations that enforce flow along NHaches
and no flow across boundaries defined in the coassale
Watershed Boundary Dataset (WBDYThis dataset therefore

are similar withwDCloud, also have several disadvantagesProvides a nationally consistent representation tbe
The disadvantages are black box nature of comnierci@ydrologic connectivity of the landscape.

software service and restricted use of open sowatershed
dataset, and high licensing cost. Another optioferetl by
USGS is StreamStats [7], which provides online vehied
delineation capabilities based on NHD. Howevere&uStats
requires significant amounts of pre-computing stegsch can
delay the incorporation of enhancements in undeglyWHD
data. Moreover, StreamStats is not currently albkglfor all of
the lower 48 states.

Instead,WDCloud uses nationally consistent and publicly
available underlying data (NHD+) with very minimal
precomputing of these data required in the tooleré&fore,
enhancements to this dataset can be quickly incaiga into

NHD+ encompasses the entire contiguous United Stege
segmented into 21 HUC regions, and contains apprately 2
million unique catchments. HUC codes are used gmsat
watersheds into groupings of 2, 4, 6, and 8 digi(ds. 2 digit
HUCs are the largest watersheds and contain sexedidit
HUCs. 4 digit HUCs contain 6 digit HUCs, and 6 tiglUCs
contain 8 digit HUCs. This provides a segmentatmiNHD+
catchments that makes it possible to know, baseitsdrUC,
what 2 digit, 4 digit, 6 digit, and 8 digit HUC veashed that
catchment is within common geospatial dataset.

I1l. WDCLouD DESIGN

WDCloud whereas other systems would require re-runningh, Design of WDCloud on AWS

data pre-computing steps. This is true for both H&RI's
ArcGIS tool [3] and USGS Stream Stats to the bdsour
knowledge. Furthermore, the typical manual delioeasteps
of Digital Elevation Model (DEM) processing that sto

2 https://www.argis.com

WDCloud is composed of six components as shown in
Figure 3. These six components are: 1) a web pdotal
watershed delineation, 2) NHD+ database, 3) autemnat
catchment search module, 4) geometric union mo8&jilexec-

3 http://nhd.usgs.gov/wbd.html

Algorithm 1 Automated Catchment Search for Multiple Regions in NHD+

Require: coord: coordinate for outlet of the target watershed
1: start_HUC _region + get_regional_dataset (coord)

2: terminal_paths < get_terminal path_infos (start_ HUC _region, coord)

3: catchments + get_catchments (start_HUC' _region, terminal_paths)

4:

5: multi_region_hydroseqs < get_multi_region_hydroseqs_info (start_HUC_region, terminal_paths)
6: if length(multi_region_hydroseqs) > 0 then

7: related_HUC _regions < find_related_ HUC_regions (multi_region_hydroseqs)

8: region_index < 0

9: while region_index < legnth(related_HUC _regions) do

10: catechment_for _HUC _region < get_catchments (related_HUC_regions[region_index], terminal_paths)
11: catechments.append(catchment_for_HUC _region)

12: region_index++

13: end while

14: end if

ution time estimator, and 6) compute and storageurees on
AWS.

Web Portal for Watershed Delineation This portal

provides a user interface to select an outlet doate for

delineating a target watershed. Once a hydrolagp#tcts a
point of interest on the user interface on thegand clicks
on a submit button, a process for watershed ddioreatarts.

TABLE L. THREEATTRIBUTES FORAUTOMATED CATCHMENTS SEARCH
MECHANISM
Attributes Description
HydroSeq Unique hydrologic sequence number

assigned to each region in the dataset.

This portal is also used to confirm the final detition result
for the input coordinate. The final result will ldésplayed on

Hydrologic sequence number of the terminal

TerminalPath | ¢ ature of the watershed network.

this portal and provided as several files, whighexisting GIS

tool-compliant format such as Keyhole Markup Larggid].

Hydrologic numt of

downstream.

DnHydroSeq sequence

NHD+ Database This component contains NHD+ dataset
required for watershed delineation. Originally, NHPonsists
of 21 distinct HUC region dataset (for contiguou$)l Each
HUC region dataset includes several raw-level hgdaphy
data such as DEM (Digital Elevation Mode) and flow
direction/ accumulations. Each dataset only couarited
areas in U.S. based on HUC code. In order to fatdlithe
delineation for the large-scale watershed (e.gslgsippi), we
extract necessary data from NHD+ and store these wa
Microsoft SQL Server.

Automated Catchment Search Module This module is
used to automatically collect relevant catchmeotghe target
watershed, which is distributed on multiple HUC iopg in
NHD+. The details of this automated mechanism i
described in Section I1I-B.

Geometric Union Module This module performs the
geometric union operation to calculate the finauie of the
target watershed. We proposed three strategiengmve the
performance of geometric union operation. The tistesgtegies
will be described in Section IlI-C.

Execution Time Estimator. This component is used to
provide accurate estimation for delineation timethed target
watershed. We emplayLR (Local Linear Regression) for this
estimation. This estimator will be explained in &8st lI-D.

Compute and Storage Resources on AWSNDCloud
uses Amazon Web Service (AWS) [1] cloud infrastucetfor
its computing and data management environméh3Cloud
utilizes various configurations (e.g. a single VM ¥M
cluster) and types of VMs based on the union gyeteom the
geometric union module. These VMs performs actadhdat-

ion process for the watershed. (most processesatérshed
delineation performed on VMs are related to geoimetnion
of catchments.) The VM resources WDCloud are managed
by autoscaling mechanism, which will be describe&®éction
IlI-E. Moreover, WDCloud leverages Amazon S3 (Simple
Storage Service) [1] in order to store pre-compiea for
large-scale watershed and delineation results.

B. Automated Catchment Search Mechanism using NHD+

To automatically search and collect relevant catafshfor
the target watershed, we propose an Automated Qetulis
Search Mechanism (ACSM) using NHD+. For the ACSM, w
leverage three main attributes provided by NHD+eSehthree
attributes areTerminalPath HydropSeq and DnHydroSeq
[10], which are described in Table I.

Algorithm 1 describes the details of the ACSM. RE@SM
starts with finding a proper HUC region datasearsHUC
region) in NHD+ for an outlet coordinate (inputria user) of
the target watershedn(1). Based on the coordinate and the
HUC region dataset for the input outlet, this auated
mechanism find¥ erminalPathfor the watershedr(2). Using
TerminalPath, the ACSM finds catchments for thegear
watershed in that HUC region. The ACSM, then, finds
HydropSeqs(multi region hydroseqsat In 5) in the HUC
region, which encompass the target watershed’sofygical
flow information with other HUC regions in NHD+. thulti
regionhydroseqxist, this means that the target watershed is
also distributed over other HUC regions in NHDH).
Otherwise, the target watershed is composed ohents in a
single HUC region (start HUC region).

Fig. 4. Data-reuse Example E andF are pre-defined regions. The black
catchment is aggregated. Since the gray catchmews finto the black
catchment, the gray catchment and its watershé@ldd G, must also be
collected.

By leveraging multi regiorhydroseqgs the ACSM finds all
relevant other HUC region dataset by compafmilydroSeq
in other HUC regions with multi regidmydroseqgin 7). The

terms of both time and money. In NHD+, the hydrglaata
for the contiguous U.S. is divided into 21 distinegions. Each
region can have a few catchments that connect tthan
region. Data-reuse stores results that span théonadg
boundaries, leveraging the natural segmentatidheoflata. By
storing these multi-region watersheds, the perfogeais
benefited by eliminating multiple queries to aggteg the
multi-region catchments and the fact that thisvedlanost of
the work to be computed offline. Figure 4 showseaample
for the multi-region data-reuse strate@y.andF are regions
defined as part of the NHD+ dataset. The gray cadctt inF
flows into the black catchment B2 This means that when the
black catchment is collected, the gray catchmerdtralso be
collected and the watershed of the gray catchnsesihdwn as
the area encompassed by the dotted line, lalielé&hta-reuse

ACSM searches for all relevant HUC regions and ind pre-computes the watershe® and stores it, so it can be

catchments in those regions by usifigrminalPath(In 10).

Once the ACSM completes to explore all relevant HUG

regions, all catchments to form the target watetshee
collected.

C. Performance Improvement Strategies for Geometrimin

Once the ACSM collects all relevant catchments tfa
target watershed, the watershed delineation pesfgeometric
union operation (Figure 2 in Section II-A) usingl #he
catchments to build a single catchment representhng
boundary of the target watershed. This geometrioruis the
most time consuming operation in the watershedhdation.

To reduce the execution time for the geometric mnio

operation, we employ three strategies: 1) datagrel®
parallel-union, and 3) MapReduce.

Data-Reuse The general architecture for data-reuse is to
pre-compute catchment unions. When a stored pant i

accessed, instead of a full traversal and mergeallothe
relevant catchments, traversal halts and a singiehment is

retrieved when the black catchment is collectee: déta-reuse
imits traversal of the catchments and the numbér o
catchments sent to the union by targeting largeensheds.
This strategy has a low memory cost since it cessisstoring
only 16 files (total file size is 106 MB).

A Collection
of C

Aut ted Catch
Search Mechanism

Parallel Task Creation Unit

A subset of
Catchments

Task #1 Task #2

Interim Result
of Catchment Union

Final Delineation Result
for Watershed

Interim Catchment Union Unit
(2" Union Operation)

Fig. 5. Parallel-Union subsystem.

Parallel-Union: The second strategy is parallel-union that

traversing the catchment network and limits the ntoaf
catchments passed to the union operation. Althoubis,
strategy has similarities with caching, it is mudtiferent.
Data-reuse provides a guaranteed performance egimant
unlike caching. Data-reuse does not require a Bpgunint of
interest to be already selected by a user in datethat point
to achieve a performance increase. Data-reuse isefftine
optimization that targets the large-scale and rnatfion
watersheds such as the Mississippi watershed.

Figure 5 shows the architecture of the paralleboni
subsystem. The parallel-union starts with receidarapllection
of all relevant catchments from the ACSM (described
Section 1lI-B). The collected catchments are serthé Parallel
Task Creation Unit (PTCU). The PTCU partitions the
catchments intd subsets evenly. The PTCU, then, initiakes
parallel tasks and sends each subset of catchrweagsh task
that performs the S1 union operation on a subset of the
catchments, and then sends its interim union resflt

By pre-computing every point, the union computationcatchment to the Interim Catchment Union Unit (IQUONce

would require a single file read operation, greathproving
runtime performance. This level of pre-computatids
infeasible because of two reasons. First, the tiegelired to
pre-compute every point would cause a delay inaitheption
of new data sources. In other words, if new dats. @esired by
the hydrologists, they would be forced to wait weék not
months to actually work with their data. The otlsethe cost of
storing, possibly 1-2 Gigabytes, each of the 2 ianill
catchments in NHD+, which quickly removes somehef ¢ost
benefit our system exhibits over other systems.

By utilizing watershed domain knowledge, we create
data-reuse mechanism that efficiently stores prepeged
watershed data by targeting all points requiringtirnegion
results. This provides great improvement at venjtéd cost in

all parallel tasks have sent their interim restdtthe ICUU, the
k interim results of catchments are merged B @nion
operation to create the final result for the tasgetershed.

A key issue of parallel-union is how to choose pheper
number of parallel tasks for the watershed delioeatA
common approach is to create the same number lcf teish
the number of cores on a machine. (e.g. 4 paratis for 4
core machine.) However, this approach does notssacdy
work on virtualized environments such as VM on publ
clouds. In order to determine the proper numbepafllel
tasks, we will show variable evaluation resultSaction 1V.

The parallel-union approach was essentially desigtoe
minimize the execution time of the watershed deliiom on
multi-core single machine. Even though we can leger

various VM types offered by AWS, there are limibais' to
minimize the execution time of watershed delineatiy the
parallel-union strategy because of the physicaltditions of
the HW specifications. Leveraging a single machseften
insufficient for a certain scale of watersheds. Rbose
largescale watershed, we
MapReduce.

MapReduce MapReduce
programming paradigm consisting of two phases [IHg first
phase maps the data to an intermediate format.s€hend
phase reduces the intermediate data to a finalbuithough

catchment aggregation and its use largely depemdiseoinput
and catchments involved in the watershed.

The parallelization-based approaches (e.g. patadiiein
and MapReduce) can be used in either single maabvire
multiple number of machines. The parallel-unionrapph will

use multiple machines Vige used when a single VM can provide the desired

performance (e.g. total delineation time is lesanth20

is a common distributed minutes). And MapReduce approach is for the cas¢ &h

single VM cannot provide the desired runtime pemance.
Thus, the watershed delineation system automaticall
determines either approach based on the numbextatiroents

AWS offers on-demand MapReduce services such as EM® be unioned. If the number of catchment is lbas 25K, the

(Elastic MapReduce)we pursue an Apache Had8pan open
source implementation of MapReduce, cluster on AWE.

system assigns the request to a single VM on AWSumes
the parallel-union. Otherwise the system sendsrégsiest to

choose not to use EMR because this service limits o Hadoop cluster on AWS for MapReduce operation.

debugging capabilities for MapReduce jobs.

Hadoop allows us to distribute data and computeadioss
several nodes. Hadoop parallelizes operations leatiag
containers that run the mapper and/or reducer.eTt@stainers
consist of allocated virtual cores and memory. Aldadoop
offers HDFS (Hadoop Distributed File System), whican
redundantly store data across the cluster. HDF&tipas the
data to distribute the computation across the efasiodes and
to stream as input into the map procedures. Thistipaing
has an impact on the performance of this systerichaill be
described in a later section.

This process of map and reduce intuitively resembler
system’s current parallel-union model. The mapphgse of
the geometric union is similar with the PTCU and trarallel
tasks themselves shown in Figure 5. The reduceepims
similar with the ICUU. This strategy utilizes a Hexb cluster
on AWS to distribute the geometric union to mukiplirtual
machines. This allows us to achieve much more peeoce
improvement than using the parallel-union on a lsingM.
Thus, when the collection of catchments for thegdtr
watershed is too large to be unioned in the reduirae, they
are sent to the Hadoop cluster where they are gsedewith
MapReduce and the result is then returned.

TABLE 11. STRATEGY SELECTION CRITERIA FOR CATCHMENT UNION
PROCESSING
Strategy # of Catchments # of VMs
Data-Reuse Multi-HUC region case 1
Parallel-Union # of Catchments < 25K 1
MapReduce # of Catchments 25K >1
Strategy Selection Criteria Three performance

improvement strategies 0/DCloud target different facets of
the performance and therefore are not require@very input.
Table Il shows the strategy selection criteriadtest a proper
approach for union operation of catchments.

The data-reuse strategy is only utilized when asevghied
crosses a NHD+ regional boundary. This is deterchihgring

4 m1-m3 instance types in AWS normally have 1 to 8iwfial CPU cores on
a single VM [1].

5 http://aws.amazon.com/elasticmapreduce/

6 http://hadoop.apache.org

Input: Coordinate for Qutlet of Watershed

Step #1: Collecting similar observations (from the
past execution) for Prediction by ANN.

i Proper Samples LLR-based
Execution
Step #2: Creating a linear regression model based Time
on the observations. .
Estimator

Step #3: Make a prediction for target point x by
applying the linear regression model.

- =

Output: Estimated Delineation Time for Watershed

Fig. 6. Local Linear Regression-based execution time estinfar
watershed delineation

D. Execution Time Estimation for Watershed Delineation

As we pointed out in Section I, an accurate estomapf
the execution time for the watershed delineation ais
important issue to improve the scientists’ produittifor their
research. To estimate execution time of the ddimeawve use
LLR (Local Linear Regression) [20] based executionetim
estimator, which is investigated by our previousrkv{23].
Figure 6 shows the procedureldfR estimator. This estimator
takes a coordinate for outlet of the target watedshs its input
parameter. TheLLR estimator collects similar execution
samples (from the past execution history) with fhput
coordinate usingkNN method. kNN methods uses three
features:

The number of catchments for the target watershed.
Geographical closeness to the input coordinate.
Execution environments (e.g. VM type).

The next step is to create a simple linear regrassiodel
based on the collected samples fromKkRN&l. The parameters
(and represent the intercept and slope of the linearat)od
for the linear regression model can be calculated b
minimizing the objective function in equation-1.dguation-1,
Xo represents the outlet coordinate for the watersiedlV
means the set of similar samples with the outletdioate.

Z [yi — a(20) — B(xo)zi]? Q)

x; €V

min
a(xo).B(xo)

LLR estimator, then, provides the estimated execdiina down operation is that a VM will be terminated whte
(f(xo)) for the input coordinate by the linear regressiomdel VM's running time is approaching the billing bourtde VM's
obtained by the previous step. status is idle state, and the Queue of the VM igtgifn 5-6).

f(@o) = a(zo) — B(zo)o 2) Algorithm 3 Scaling-Down Operation of Autoscaling

. 1: while true do
E. VM Resource Management: Autoscaling

2: V Ms < get_all_running_VMs()
VM resources used byWDCloud are managed by an if IV
athscalmg mechamsm. The aUtoscalmg mechanism 5 if VM’s ruﬁnihg time % Billing Bound == 0 && V M’s status
designed to automatically manage both under- aner-ov is Idle && VM’s Q is Empty then
provisioning of VMs forWDCloud Note that autoscaling of ¢ terminate_instance (VM)
WDCloud s different mechanism from “Auto Scaling” offered [t

by AWS [1]. The under-provisioning of VM resourcean 9 end while
result in poor performance (e.g. slow response)timg
WDCloud due to the lack of computing resources. Over-
provisioning can hurt the cost-efficiency WiDCloud due to a IV. EVALUATION
number of idle VMs.

In the evaluations o¥WDCloud, we focus on two main

Algorithm 2 Scaling-Up Operation of Autoscaling aspects o’WDCloud, which are the performance improvement
Require: jobpew: new request for watershed delineation via thr_ee s_trateglt_as (_Secuon I”'C_) and the acxcyaraf the

I: VMs « gel_all_running_VMs () execution time estimation vlaLR estimator (Section I11-D).

5.

3i+0 A. Performance Improvement via Three Strategies

4: while i < length(V M s) do _ i _ ifi
5: comp_time < >, Exec Time of Jobs in Job Queue on V M|i] Da,ta Reuse The main focus of data-reuse WaS ,the specmc

+ Jobnew's Estimated Exec Time targeting of the largest watersheds (e.g. the BBgspi), those

6: if comp_time <threshold then spanning multiple regions. By leveraging the segatém of

7: CandidateV M s.append(V M [i], comp_time) the NHD+’ data-reuse achieves a 111x Speedup &ensimo

8 end if . . .

9 it Table IIl. This paragraph discusses about thielameedup.

10: end while

11: TABLE Il SPEED-UPS BYDATA-REUSEFOR THEMISSISSIPPI

12: if len(CandidateV Ms) > 0 then WATERSHED

13: sort(CandidateV M s, “comp_time”)

14: assign_job_to_VM(CandidateV M s[0], Jobnew) Commodity Laptop Data-Reuse Speed_Up

15: else

16: newV M = create_new_VM() 10+ hours 5.5 minutes 111x

17: assign_job_to_VM(newV M, jobnew)

18: end if

The Mississippi watershed of 1,100,000+ catchments
Algorithm 2 shows the scaling-up mechanism of theoriginally required 10+ hours to perform the geainetnion.
autoscaling. The scaling-up decision is triggerditnva new That same example required 5.5 minutes to unionnwhe
delineation job jobney arrives. The autoscaling, then, obtainsutilizing the data-reuse strategy. To explain thige speed-
the information of currently running VM#n(1). The next step ups, which only required the storage of 106 MB oé-p
is that the autoscaling calculates the estimatbccompletion computed data, we describe an example executiom. Ou
time on each running VM by the sum of estimatedcaien Mississippi example aggregates a total of 1,117,172
times of all existing jobs in work queue on the \@Md the catchments. Once the data-reuse is used, the Mifgsis
estimated execution time @bbrew (In 5). For this step, the example aggregates only 29,137 catchments. Thiates|uo
autoscaling collaborates witll R execution time estimator in pre-computing the union of 1,088,035 catchmentsichwlis
Section 1lI-D. The autoscaling compares the estghat 97% of the original catchments. This 111x speediugeeded
completion time of the new joloprey) with a thresholdlf 6), our initial estimates (e.g. less than 20 minutes) resolved the
which is defined by the user (e.g. 30 minutes bodr). If the |argest class of watersheds, but several watershafds
estimated completion time of the new job is earifeen the approximately 100K to 250K catchments that tooknétrs to
threshold, the autoscaling stores the VM into adate VM delineate still remained. These large watershed il dealt
list (CandidateVM5 for the job executionlif 7). If existing with other two parallelization strategies.
.VMS can comple_tes thebre within the threshol_dlr(n 12), _the Parallel-Union: This strategy was designed to maximize
jobnew will be assigned to a VM that offers earliest céelipn o horformance of a single VM, and is used for lsnaend
Of j0bnew (_In 13-19. Othe_rW|se, the autoscalmg creates a NeWya jiym-scale watersheds (# of, catchments < 25Kkep
VM (scaling-up) and assigned the new job to the MW (In g5 of the parallel-union is how to choose theper number
16-17. of parallel tasks for the watershed delineation.determine
For the scaling-down operation (Algorithm 3), thethe proper number of parallel tasks, we executesdgample
autoscaling uses the billing boundary-based VMisgadown. watersheds with 1 to 32 tasks on different typed/bfs on
BecauseWDCloud runs on AWS, the autoscaling uses theAwS. These four watersheds contains less than 25K
hourly billing bound of AWSI 5). A key step of the scaling- catchments, and they are in Pennsylvania (140 wetots),

Fig. 7. Normalized geometric-union time of watershed deitran by parallel-union strategy on four types &8/

South Carolina (155 catchments), Virginia (430 latents),
and Tennessee (23K catchments). We also used iideredt
types of general purpose VMs (e.g. ml instancésjoflthis
evaluation. The results for the parallel-union ea#ibn are
shown in Figure 7, and all results are normalizedtte
geometric union time from non-parallelization cdaesingle
task). Back bold line in all graphs is an averafjaaymalized
geometric union time of four watersheds by the Ifgranion
strategy. The results show that, on average, thalglaunion
provides the best performance improvement wiépCloud
creates 8-32 tasks for the geometric union. (3ecpp on the
medium VM, 3.1x speed up on the large VM, 3.6x dpgeon
the xlarge VM, and 2.9x speed up on the 2xlarge VBY
using the parallel union strategy, we can compléie
delineation for the four watersheds with 28-15008€ds (8
parallel tasks on 2xlarge instance). Without thealbel-union,
these four watershed take approximately 500—32@@nsks
(single tasks on medium instance). These resuligliem

WDCloud with the parallel-union can handle small- and

medium-scale watershed (# of catchments < 25K), thist
strategy is not sufficient to obtain enough perfance
improvement for large-scale watersheds (# of cagctim
25K). Those large-scale watersheds will be handigdthe
MapReduce strategy.

for Maine watershed (66K), 11x of speed-ups for tkieky
watershed (107K), and 21.2x of speed-ups for S@#kota
watershed (253K). These results also show that nloee
catchments a watershed includes, the higher speed-u
WDCloud can achieve. For the South Dakota watershed, the
delineation takes 4.2 hours with no parallelizatibut the
same delineation takes only 11.8 minutes with 32 ¢tadoop
cluster.

25

T
4-cores 1

20 ~ 8-cores N - _

16-cores
15 - 32-cores ——1 -~ -

Speed-Up
(Baseline: No-Parallel)

ME(66K) KY(107K) SD(253K)
Large-Scale Watershed (# of Catchments)

Fig. 8. Speed-up for geometric union of
MapReduce.

large-scale watgtshby

B. Execution Time Estimation for Watershed Delineation
The next evaluation is to measure the performafdd B

MapReduce To show the performance improvement by estimator ofWDCloud for predicting the execution time of

the MapReduce strategy, three large-scale watess

watershed delineation. We employ prediction acgurand

Hadoop cluster are examined. These three large-scaj\yAPE (Mean Absolute Percentage Error) for this eatibn

watersheds are located in Maine (66K catchmentshtdcky
(107K catchments), and South Dakota (253K catchshefrt

and these metrics are shown in equation (3)—(4higher
result of prediction accuracy means better, anceiawsult of

this evaluation,WDCloud uses 4 to 32 cores of Hadoop MAPE indicates better performance.

clustef. The evaluation results by the MapReduce strategy

shown in Figure 8. As shown in the graph, by leggmg 32

core Hadoop clusteiVDCloud can achieve 7x of speed-ups

7 4 cores of Hadoop cluster uses 4 medium VMs (4 cotk). 8 cores of

Hadoop cluster has 4 large VMs (4 x 2 cores). I@¢sof Hadoop cluster

consists of 4 xlarge VMs (4 x 4 cores). 32 coresHafdoop cluster is
composed of 4 2xlarge VMs (4 x 8 cores).

Tactual
T) Tpredicted 2 Tactual
dicted
Pred. Accuracy = Tpm tete 3)
predicted
T) Tp?"edicted < Tactual
actual

predicted,i
4

1 . Tactual i
MAPE = - ’
a2

S Tactual,i
i=1

TABLE IV. OVERALL EVALUATION RESULTS FOREXECUTION TIME

ESTIMATION
LLR Estimator kNN mear
Prediction 0 ; :
Accuracy 85.6% 65.7% 42.8%
MAPE 0.1¢ 0.9: 1.97

As the baselines of this evaluation, we WBEN [20] and
mean [25]. For the execution time estimatikNN uses three
features that are 1) geographical closeness to tahget
watershed, 2) the number of catchments, and 3ypeeof VM
instances, which are the same wWittR estimation.

We measures 420 random coordinates (20 rando
coordinates of watershed outlets x 21 HUC regiofts)
execution time estimation. The overall results sihewn in
Table IV. As shown in Table IV.LR estimator outperforms
other two approaches. The prediction accuracy LoR
estimator is 85.6%, which is 19.9% and 42.8% higthan
kNN and mean-based estimator. The MAPE resultld® is
0.19, which is 4.9x and 10.4x lower (better) thémeos.

Moreover, to show the performance LldfR estimator that
can precisely estimate the delineation time for ensdted
outlets on all 21 HUC regions in NHD+, we show the
estimation results of three estimators based oin é#dC
regions. Figure 9 shows the estimation resultslbAlaHUC
regions. For the prediction accuracy on all 21 Hké@ions
(Figure 9(a)),LLR estimator shows over 80% of prediction
accuracy for all 21 regions. For the MAPE resulsgyre

9(b)), LLR estimator has accurate MAPE results, which are les

than 0.23, except for only two HUC regions (08 43dHUC
regions). These results show thiatR estimator provides
reasonable estimation for the execution time ofwiagershed
delineation, and can provide precise estimatiorultesfor
almost all HUC regions in NHD+.

V. EVALUATION

Geospatial data analysis research has benefited fine
technical advancements of cloud computing. Sevexaks
have shown the clouds ability to provide perfornganc
improvements to these data and compute
applications.

A system to increase the performance of watershed

calibration by utilizing the cloud was designedHiymphrey et
al [22]. This system reduced an 11 hour computatin@ 5
minute computation by using cloud computing. Thegused
on core utilization and the parallelization of thpplication;
instead we also focus on using specific charatiesi®f the
application (e.g. Data-reuse) to improve the ruatiwithout
such large compute clusters. Furthermore, we imzatp
MapReduce to distribute our computation instead
performing it manually.

Caching is similar in style to the data-reuse statof this
work. Chiu et al [13] proposed a strategy for caghin the
cloud. This caching is most useful for the resafta Service-
Oriented Application (SOA), but not useful for applications
storage of intermediate data formats. The dataereisimilar
to caching, but not equivalent because the pre-atedpdata
will never be swapped while the system is online.

intensiv

of

Several works [8, 18, 27] utilize MapReduce to emaa
their GIS and spatial data analysis applicationadd®p-GIS
[8] was designed to improve spatial query processin
capabilities of GIS via adopting MapReduce. HadGdf-
supports several spatial enhancement capabilitieh s
spatial data partitioning for parallel processimgpd spatial
query processing. Hadoop-GIS is also integratedh \Mive.
SpatialHadoop [18] is a low-level extension of Hagoand
supports spatial indexing for its input datasefadailitate the
spatial data processing. Dart [27] is another tgpe&sIS on
Hadoop. Dart is collaborating with HBase and presida
hybrid table schema to store spatial data in HBRsaet. utilizes

ublic cloud infrastructure such as Amazon EC2. sthe

search are relevant to our work, but our worklifferent
because we employ MapReduce as a part of our skieegies
to improve the performance of geometric union ire th
watershed delineation process.

Alencar et al [9] have reported an on-going redeproject
to employ cloud infrastructure and capabilitieswatershed
research. Their work is to build a cloud-based atxltative
platform for watershed research. A difference fram work is
that they focus on giving collaborative capabititi€e.qg.
hydrology data sharing) for stakeholders (e.g. rdts and
decision makers) to watershed research system via
CometCloud [16]. WDCloud does not consider having
collaborative capabilities for watershed delinaatiéd\nother
difference is that it is unclear which raw datatbety use for
their project.

VI. CONCLUSION

Watershed delineation is a process to determineatba
draining to a point on the land surface. This playsitical role
for hydrologic and water resources research beosatesrshed
delineation is often the first step of an analysimwever,
existing watershed delineation tools are insuffiti® support
hydrologists because they have not kept pace \eithdatasets
that allow for national-scale watershed delineatawer the
web without requiring extensive data preprocessiteps.
Watershed delineation applications lack the cajisilto fully
leverage scalable and high performance computing
ffrastructure (e.g. public cloud), and provide diceable
performance for the delineation tasks.

To solve these problems, this paper reports\Cloud,

which is a system for large-scale watershed ddimeaon
AWS. WDCloudemployed three key approaches:

An automated catchment search mechanism for NHD+,
which is a public watershed dataset from USGS.

Three performance improvement strategies: Dataereus
parallel-union, and MapReduce.

LLR execution time estimator for watershed delineation

Our evaluations onWDCloud mainly focus on 1) the
performance improvement for watershed delineatiantiwee
strategies and 2) the prediction accuracy for deliion time

by LLR estimator. In terms of the speed up of watershed
delineation tasksWDCloud achieves 111x speed up for the
Mississippi watershed (the largest watershed in)utBough

the data-reuse strategy, up to 21x speed up fgelscale
watershed via MapReduce, and 18x speed up for medind

small-scale watershed by using the parallel-unippr@ach.

ble

Moreover, thel R estimator ofVDCloud provides the relia-

Fig. 9. Execution time estimation results of three estimsatm 21 HUC regions.

execution time estimation of watershed deliogatvith

85% of prediction accuracy. This result is 23%-48iter
than other state-of-the-art estimation approaches.

(1
(2
(3]
(4]

(5]
(6]

(7]
(8]
19

[10]
[11]

[12]

[13]

REFERENCES

Amazon Web Services. http://aws.amazon.com.

Microsoft Azure. http://azure.microsoft.com.

ESRI — ArcGIS Watershed. http://www.arcgis.com/httae.html?
id=8e48f6209d5c4be98ebbf90502f41077

Wikipedia - Keyhole Markup Language.
http://fen.wikipedia.org/wiki/Keyhole_Markup_Languag
National Hydrography Dataset — USGS. http://nhdsugay
NHDPIlus Version 2 - Horizon Systems.

http://www.horizonsystems.com/nhdplus/NHDPIusV2 leopip

USGS - StreamStats. http://water.usgs.gov/oswisgess/

A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhangné J. Saltz. Hadoop-GIS: A
High Performance Spatial DataWarehousing Systent Mapreduce. In Proc.
VLDB Endowment, 2013.

P. S. C. Alencar, D. D. Cowan, F. McGarry, and R. Ré&lmer. Developing a
Collaborative Cloud-based Platform for Watershedljsis and Management. In
Proc. IEEE CollaborativeCom, 2014.

A. M. Castronova and J. L. Goodall. A Hierarchiblgtwork-based Algorithm for
Multi-Scale Watershed Delineation. Computers & Gémsces, 72, 2014.

C. L. Chang. The Impact of Watershed Delineation Hydrology and Water
Quality Simulation. Environment Monitoring and Assenent, 148, 2009.

D. Chen, S. Shams, C. Carmona-Moreno, and A. Ledssessment of open
source GIS software for water resources manageinedeveloping countries.
Journal of Hydro-environment Research, 4, 2010.

D. Chiu, A. Shetty, and G. Agrawal. Elastic ClouccBes for Accelerating
Service-Oriented Computations. In Proc. SC, 2010.

(14]
(15]

[16]

(17]
(18]

[19]

(20]

(21]

(22]

(23]

[24]
(25]

(26]

(27]

J. Dean and S. Ghemawat. MapReduce: Simplified [Pateessing on Large
Clusters. In Proc. USENIX OSDI, 2004.

E. Deelman, G. Singh, M. Livny, B. Berriman, andGbod. The Cost of Doing
Science on the Cloud: The Montage Example. In P$a;.2008.

J. Diaz-Montes, M. AbdelBaky, M. Zou, and M. PamstComet-Cloud: Enabling
Software-Defined Federations for End-to-End Appglma Workflows. IEEE
Internet Computing, 19, 2015.

D. Djokic and Z. Ye. DEM Preprocessing for EfficieWatershed Delineation. In
Proc. ‘99 ESRI Intl. User Conference, 1999.

A. Eldawy and M. F. Mokbel. SpatialHadoop: A MapRed Framework for
Spatial Data. In Proc. 31th IEEE ICDE, 2015.

M. B. Ercan, J. L. Goodall, A. M. Castronova, M. Hphrey, and N. Beekwilder.
Calibration of SWAT models using the cloud. Envimenmtal Modeling &
Software, 62, 2014.

T. Hastie, R. Tibshirani, and J. Friedman. The Eertof Statistical Learning:
Data Mining, Inference, and Prediction. 2011.

C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. kKsatB. Berriman, and J.
Good. On the Use of Cloud Computing for Scientifiorkflows. In Proc. IEEE
eScience, 2008.

M. Humphrey, N. Beekwilder, J. L. Goodall, and M. Brcan. Calibration of
Watershed Models using Cloud Computing. In ProEBEScience, 2012.

I. K. Kim, J. Steele, Y. Qi, and M. Humphrey. Compensive Elastic Resource
Management to Ensure Predictable Performance fan@fic Applications on
Public laas Clouds. In Proc. 7th IEEE/ACM UCC, 2014

S. Kopp. Custom Watersheds at the Click of a Butwatershed Delineation in
ArcGIS Online. ArcGIS Resources ESRI, Aug, 13, 2013

W. Smith, I. Foster, and V. Taylor. Predicting Ajption Run Times with
Historical Information. In Proc. JSSPP, 1998.

M. P. Strager, J. J. Fletcher, J. M. Strager, CY@ll, R. N. Eli, J. T. Petty, and S.
J. Lamont. Watershed analysis with GIS: The wattsbharacterization and
modeling system software application. Computerse®&&iences, 36, 2010.

H. Zhang, Z. Sun, Z. Liu, C. Xu, and L. Wang. DatGeographic Information
System on Hadoop. In Proc. IEEE Cloud, 2015.

