An Automated Approach to Cloud Storage Service
Selection

Arkaitz Ruiz-Alvarez
Department of Computer Science
University of Virginia
Charlottesville, VA, USA
arkaitz@virginia.edu

ABSTRACT

We present a new, automated approach to selecting the
cloud storage service that best matches each dataset of a
given application. Our approach relies on a machine read-
able description of the capabilities (features, performance,
cost, etc.) of each storage system, which is processed to-
gether with the user’s specified requirements. The result is
an assignment of datasets to storage systems, that has mul-
tiple advantages: the resulting match meets performance
requirements and estimates cost; users express their stor-
age needs using high-level concepts rather than reading the
documentation from different cloud providers and manu-
ally calculating or estimating a solution. Together with our
storage capabilities XML schema we present different use
cases for our system that evaluate the Amazon, Azure and
local clouds under several scenarios: choosing cloud stor-
age services for a new application, estimating cost savings
by switching storage services, estimating the evolution over
time of cost and performance and providing information in
an Amazon EC2 to Eucalyptus migration. Our application
is able to process each use case in under 70 ms; it is also
possible to easily expand it to account for new features and
data requirements.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems
and Software—distributed systems, performance evaluation
(efficiency and effectiveness)

General Terms

Algorithms, Measurement, Economics

Keywords

Cloud computing, cloud storage services, matching algo-
rithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ScienceCloud’11, June 8, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0699-7/11/06 ...$10.00.

Marty Humphrey
Department of Computer Science
University of Virginia
Charlottesville, VA, USA
humphrey@virginia.edu

1. INTRODUCTION

Scientists are increasingly relying on computational re-
sources, both compute and storage, to expand scientific knowl-
edge. Simulation is now a key component of the scientific
method, but it requires compute capabilities beyond the sin-
gle workstation. The amount of data gathered from sci-
entific instruments is also quickly overcoming the capacity
of storage systems; a phenomenon called ”data deluge” [9].
Because of these two reasons, scientists are looking to ex-
pand their local resources (workstations and clusters) with
highly available and scalable systems. In this paper, we fo-
cus on the storage of data in cloud computing [5]. Each
cloud provider offers different storage abstractions: Amazon
provides the S3, EBS, SimpleDB and Relational Database
storage services [1]; similarly Windows Azure provides the
Blob, Table, Drive and SQL Azure services [12]. For local
storage resources users have traditionally used NF'S drives
and sometimes high performance distributed systems such
as the GPFS and Hadoop.

In this new context, with multiple and very different op-
tions for storage, users are facing a daunting task when try-
ing to select a storage service. There are multiple aspects
that have to be taken into account: performance, cost, spe-
cific features, long term management issues, etc. For ex-
ample, a user may decide to store some data in the Blob
service of the Azure cloud; read throughput is strongly de-
pendent on the number of concurrent clients and going from
1 client to 11 concurrent ones the throughput per client de-
creases by 40% [10]. Application performance is affected by
the selection of the storage and several variables (number
of clients, size of data and requests, etc.). Users would also
like to select the cheapest storage service that meets the
data requirements: storing data in Amazon’s Reduced Re-
dundancy Storage is cheaper than the regular service, but
comes at the cost of reduced durability. Amazon’s RRS is
appropriate for intermediate results and would reduce the
storage bill for these data by 33%. Selecting a storage ser-
vice can also be limited to specific characteristics, such as
support for data versioning. To further complicate this se-
lection, the requirements for existing data change over time
and new datasets and applications are added to the cloud
so choices need to be reconsidered periodically.

We believe that this complex decision should be auto-
mated, and we present our approach in this paper. First, we
identify the multiple characteristics and features of storage
systems and propose an XML schema that includes them.
Second, we present examples of current storage systems that

are fully described using our schema. Third, we take several
use cases drawn from our experience in the field of scientific
computing and algorithmically match their storage needs to
concrete storage services. The final result of our system is a
match of services and requirements, which ensures that data
storage meets users’ requirements (durability, availability,
etc.), performance expectations (latency and throughput at
scale) and provides cost estimates. For example, a migra-
tion from the public Amazon cloud to a private Eucalyptus
deployment would usually involve the movement of data out
of the Amazon cloud. However, we find that for one of our
use cases continuing using the SimpleDB service from our lo-
cal cluster in Virginia offers good performance and the data
transfer and storage cost is negligible. We summarize the
contributions of this paper in the following list:

e We devise a XML schema capable of fully describing
cloud and local storage systems. Our goal is to algo-
rithmically process this information to match users’ re-
quirements. We present several descriptions of storage
services, including the most commonly used services
from Amazon and Windows Azure.

e We describe several use cases in distributed applica-
tions that benefit from our system. The possible ben-
efits for the users are multiple: our results can guide
application design, estimate costs, calculate cost sav-
ings by switching clouds or storage systems with pos-
sible tradeoffs and assist with storage system selection
in private cloud deployments.

We evaluate two aspects of our approach: the extensibility
of our approach, and the wall clock time spent processing
each use case. Since cloud computing is an evolving field
cloud providers will change existing storage systems and re-
lease new ones. We present the coding effort required for
each data requirement that the user can check against the
description of the storage systems; in our example Durability
is coded in under 100 lines of C# code. For each of our use
cases we present time measurements processing each cloud
provider (Amazon, Azure and local) and the total wall clock
time; all measurements fall below 70 ms.

The storage selection system presented in this paper is
part of a broader effort to automate data management in
cloud computing. Our final goal is to present the users with
the following: a generic API for accessing data and a mech-
anism to add datasets (which includes both the data and
additional metadata such as storage requirements). The
underlying storage services and APIs will be hidden from
the user; a data management layer can evaluate each avail-
able storage system while taking into account several fac-
tors (cost, latency, etc.) that affect all the user’s datasets.
By introducing a data access layer (above the cloud storage
systems) changes in data requirements (different usage pat-
terns, cold data) and storage systems (lower prices, different
performance, new services) can be detected and we can run
some of the use cases presented in this paper without user
intervention and without modifying the applications. The
storage service selection problem presented in this paper is
the first step in our work.

In the next section we review related work. In Section
3 we discuss the target storage systems of this work. We
introduce in Section 4 our XML schema; and in Section 5
example descriptions of current storage systems. Section 6

describes several example use cases for our system. These
use cases, together with the schema, are evaluated in Section
7. We finally conclude in Section 8.

2. RELATED WORK

Recent work in the cloud computing area has focused on
the storage APIs and underlying systems. We can find in
the literature evaluations of current cloud storage systems
such as Amazon S3 [16] and Windows Azure [10]. Addition-
ally, new storage systems such as an elastic transactional
data store have been suggested [6]; other papers focus on the
storage stack [2] and moving from the file system interface to
scalable cloud storage [17]. The focus of our proposed work
is not introducing new storage systems or APIs, but rather
developing a higher level process that will use these underly-
ing systems. Thus, our aim is to express the characteristics
and features of current storage systems (while being flexible
enough to accommodate future ones) in a machine readable
format. These descriptions allow us to automate processes
such as storage selection and cost analysis; we could imple-
ment past manual work that have evaluated specific appli-
cations such as Montage [7] or platforms such as grids for
volunteering computing [11].

Although we mainly focus on cloud computing platforms
with different storage systems, our approach also relates to
existing data grids [4], whose services provide abstractions
for accessing and storing data. However, there is an impor-
tant limitation for applying data grid APIs to the current
environment: data grids usually use the file abstraction as
the basic unit of storage while cloud computing has intro-
duced new data storage interfaces. A file instance in grids
corresponds to the blob instance in clouds, but the queue
and table cloud abstractions have no corresponding coun-
terpart in grids. Thus, we need to extend previous work
on these storage abstractions such as the GLUE schema [3]
in order to accommodate the new cloud services. One of
the new characteristics is cost: every hour of computation,
GB stored remotely or transferred over the network has an
explicit price tag. Prior to the cloud, the price to pay for
computing had been hidden from users; in cloud computing
users are faced with the task of optimizing cost, but this task
is usually daunting without an automated approach since
there exists multiple cloud providers with different storage
options and prices.

Since data is commonly replicated in a distributed sys-
tem, applications need access to a replica catalog to locate
the actual data [23] and implement a strategy for replica se-
lection; Condor relies on a matchmaking algorithm to select
a replica that fits the application requirements. The re-
quirements are specified as expressions over attribute-value
pairs, for example "reqdSpace = 5G”. Matching replicas are
ranked by a certain attribute, for example available space.
The matchmaking framework [18] introduces the matchmak-
ing algorithm and protocols (for advertising, matchmaking
and claiming) to assign each user’s request to a resource
provider and process it. Our approach is similar although
instead of selecting replicas we select storage services. We
also present an extensible interface to execute arbitrary code
instead of doing an attribute-value match: this way we can
take into account the particularities of cloud computing and
match higher level requirements against the different cloud
storage services.

3. TARGETED STORAGE SYSTEMS

Until now, scientists usually have very limited options for
data storage. A usual local cluster solution includes a small
user directory (with backup), an NFS system that can hold
several GB of data, and a big scratch temp folder. More
advanced systems have also included a high performance
parallel filesystem, such as GPFS [20]. In recent years cloud
computing has burst onto the high performance computing
scene and has established itself as a viable alternative to cus-
tomized HPC clusters for many users who do not have the
resources (either time or money) to build, configure, and
maintain a cluster on their own. Many eScience develop-
ers are increasingly looking to create data-intensive applica-
tions [21, 8] that can take advantage of the pay-as-you-go
cost model. Thus, in this paper we will focus mainly on
cloud storage systems although we also discuss the tradi-
tional storage systems for local clusters.

The first cloud provider that we have examined is Ama-
zon. Amazon’s pioneer effort in the area [1], API compatibil-
ity with other projects (Eucalyptus [15], OpenNebula [14]),
wide customer base and the widest and most mature offer
of cloud services make Amazon EC2 our primary target for
cloud providers. Within the Amazon cloud we consider the
following storage services: S3, EBS, SimpleDB and Rela-
tional Database. S3 provides storage for objects of a wide
range of sizes (up to 5 TB), which are organized into buckets.
The most closely related interface to S3 is the traditional di-
rectory/file interface. EBS offers a device type interface, in
which a virtual hard drive (formatted with a filesystem) can
be attached to a Virtual Machine running on the Amazon
cloud. SimpleDB is based on tables that store items com-
posed by attribute/value pairs. Although SimpleDB does
not support a rich SQL interface its potential for scalabil-
ity is superior. Finally, the Relational Database Service is
essentially a MySQL database running on the cloud. Each
storage service is offered in different regions that include the
United States, Europe and Asia. In summary, Amazon of-
fers very different options for data storage; each option is
best suited to certain tasks.

We have also considered Microsoft’s Windows Azure [12]
cloud which, although it provides the Platform as a Service
(PaaS) abstraction, gives much flexibility in terms of data
storage. The storage offer in Azure is very similar to Ama-
zon: Blobs are similar to S3, Azure Drives to EBS, SQL
Azure to Relational Database Service and Tables to Sim-
pleDB. Even though the storage abstraction are essentially
the same, the implementation details differ. For example,
Amazon S3 offer both regular and reduced redundancy stor-
age unlike Windows Azure Blob. Thus an application can
make the explicit tradeoff of cost and durability in Amazon
to save money; this tradeoff is not possible for Azure Blob.
On the other hand, Azure Blob comes in two flavors: page
and block. Streaming data are best kept in block blobs,
while random accessible data in page blobs. On top of the
differences between features there are performance and cost
differences that, for some given application’s requirements,
can tip the balance in favor of one of these cloud providers.

In addition to the Amazon EC2 and Azure cloud plat-
forms we have included several local storage systems: users
directories and scratch folders mounted over NFS in a local
cluster, and a local Hadoop deployment. We believe that the
inclusion of storage systems from these three sources covers
the vast majority of storage systems available (SQL, NoSQL

<xsd:element name="CloudProvider”
type="tns: CloudProviderType”/>
<xsd:complexType name="CloudProviderType”>
<xsd:element name="StorageServices”>
<xsd:element name="StorageService”>
<xsd:element name="Regions”>
<xsd:element name="Cost”>
<xsd:element name="Performance”>
<xsd:element name="StorageAbstraction”>
<xsd:element name="Container”>
<xsd:element name="Object”>
<xsd:/complexType>

Figure 1: The hierarchical organization of the most
important elements in the XML schema. The global
element is the cloud provider, which offers several
storage services, each one representing a storage ab-
straction, across multiple regions that vary on cost
and performance.

-scalable tables-, block devices, files, etc.). We also take into
account that storage systems are continuously evolving: dif-
ferent aspects related to extensibility are introduced in the
next sections. In summary, we try to target a broad range
of storage systems so that our system does not artificially
limit the number of possibilities presented to the user.

4. XML SCHEMA

In this section we present the general structure of the XML
schema used to describe the storage systems supported by
the different cloud providers. We also introduce the types
declared and focus our attention on a couple of examples.
The complete schema is readily available on our website [19]:
it currently features 54 complex types in over 500 lines. Fig-
ure 1 shows the most important elements; the global element
is the CloudProvider and the second level is the Storage-
Services element. Each StorageService element represents
a certain Storage Abstraction that is offered in several Re-
gions. An example of a Storage Abstraction is the Windows
Azure Table. In general, we find that each storage abstrac-
tion can be thought of as a set of containers which store
objects. For example, a container may be a table (Azure Ta-
bles), a bucket (Amazon S3) or a directory structure (NFS).
The respective contained objects are items with attribute/-
value pairs, S3 objects and files. This part of the schema
focuses on the functional description of the storage system:
characteristics and features that appear on the service doc-
umentation.

The second child of the StorageService element is the Re-
gions element. Inside this element we find the datacenters
where this service is being offered, each one with its cost and
its performance. Non-functional characteristics like perfor-
mance vary from region to region; it is common to have
different costs depending on the location of the datacenter
because of the variation in electricity prices, labor costs,
regulation and taxation, etc. We provide the user with mul-
tiple complex types to express the different cost models of
clouds: StorageCost (GB per month), DataTransferCost (in
and out), RequestCost (measured in number and type of
request), QueryProcessingCost (measured in compute time
to process a query), OffNetworkDataTransferCost (usually a

<xsd:element name="Object”>
<xsd : complexType>
<xsd:sequence>

<xsd:element name="AcccessControl” type="tns:AccessControlType” minOccurs="0"/>
<xsd:element name="Interface” type="tns:InterfaceType” maxOccurs="1"/>
<xsd:element name="Metadata” type="tns:MetadataType” minOccurs="0" maxOccurs="1"/>

<xsd:element name="Data” minOccurs="0"

<xsd : complexType> <xsd:choice>

maxQOccurs="1">

<xsd:element name="AttributeValue” > <xsd:complexType>
<xsd:attribute name="AttributeNameLength” type ="xsd:integer”/>
<xsd:attribute name="AttributeValueLength” type ="xsd:integer”/>

</xsd:complexType></xsd:element>

<xsd:element name="Stream” type="xsd:string”/>
<xsd:element name="RandomAccess” type="xsd:string”/> </xsd:choice>
<xsd:attribute name="Formats” type="xsd:string”/>
<xsd:attribute name="DaysToExpiration” type="xsd:float”/>
<xsd:attribute name="ReadOnly” type="xsd:boolean”/>
</xsd:complexType></xsd:element ></xsd:sequence>

<xsd:attribute name="ID" type="xsd:string”/>
<xsd:attribute name="Name” type="xsd:string”/>

<xsd:attribute name="Description” type="xsd:string”/>
<xsd:attribute name="NamingRegularExpression” type="xsd:string”/>
<xsd:attribute name="CreationDate” type="xsd:boolean”/>
<xsd:attribute name="ModificationDate” type="xsd:boolean”/>
<xsd:attribute name="MaxSizeNumber” type="xsd:integer”/>
<xsd:attribute name="MaxSizeKB” type="xsd: float”/>

</xsd:complexType></xsd:element>

Figure 2: The type definition of the Object element.
blob, a file or a table item (set of attribute/value pairs).

flat fee for processing a hard drive), HourlyCost (usage cost
for a certain resource, such a database server) and Reser-
vationCost (usage prepayment for reservation of a resource
during a set period of time).

The Performance element allows us to express performance
characteristics for every datacenter. The two that we have
used are latency and throughput. In general, we can declare
a Measurement of a variable (latency in ms) for an oper-
ation (read) and specify the details in several ways: as a
simple scalar number, as a polynomial approximation, as a
histogram or as a set of sample measurements. Polynomi-
als, histograms and sample sets are based on one or more
variables; in our research we have found the number of con-
current clients as the most useful one because of the perfor-
mance variability. As the number of concurrent clients in-
creases many storage services’ performance diminishes; users
need to take this into account during the design of cloud
applications. Other variables that we could use are, for ex-
ample, size in KB of the request, size of the object and num-
ber of items in the container. The focus on this section of
the schema is to provide enough information so our match-
ing algorithm can make a good estimate of the performance
of the user’s application on this datacenter. The informa-
tion in this section may originate from websites like Azure
Scope [13], which provides up-to-date benchmark results for
the Azure platform.

Figure 2 shows the type definition details for the Object
element. The attributes of each object, aside from the com-
mon ones (ID, Name, Description), describe some features,
such as support for creation and modification dates; and

An object can represent different entities such as a

limitations of the service, such as the maximum number
of sub-elements (for attribute/value pairs) or the maximum
size. The possible child elements are: AccessControl, In-
terface, Metadata and Data. The AccessControl element
can be used to describe the multiple systems supported by
the storage service: from simple UNIX type permission bits
to more elaborated systems such as access control lists and
custom access policies languages (both supported in Amazon
S3). The Interface element enables us to list every operation
supported: from simple create/delete and upload/download
to creating snapshots or acquiring a lease; additionally we
can include the consistency options and transaction support.
The Metadata element contains information about the sup-
ported metadata formats (if any), most commonly a set of
attributes with string values. The Data element could be
a simple stream of bytes with possibly random access sup-
port (blobs) or a set of attributes (SimpleDB or Azure Table
items).

Finally, we acknowledge that cloud computing is a rapidly
evolving field that can make our schema fall out of sync with
the storage services. Even though we have included all the
features and characteristics of the Amazon and Azure clouds
anytime a new feature could be announced that can not be
expressed with our schema. Our main response to this chal-
lenge is to plan for extensibility: features should be able to
be easily and fully included in our system. Regarding the
XML schema, this requirement translates in the addition of
<zsd:anyAttribute> and <zsd:any> so that new elements
and attributes can be included in XML files describing stor-
age systems while conforming to our schema. More difficult

<Object ID="AZURE BLOB_PAGE” Name="Windows Azure Page Blob” Description="The Blob ...”
NamingRegularExpression=""(?![0-9]+8)(?! —)[a—zA-Z0—-9—-]{,63} (?& 1t !-)$”
ModificationDate="true” CreationDate="false” MaxSizeKB="1073741824">

<Interface>
<CustomInterface RandomAccess="true”>
<Delete>Delete Blob</Delete>
<Download>Get Blob</Download>
<Upload>Put Blob</Upload>

<CreateSnapshot>Snapshot Blob</CreateSnapshot>

<ListParts>Get Page Regions</ListParts>

<UploadPart>Put Page</UploadPart>

<Lease Duration="60"” API="Lease Blob”/>

<Copy>Copy Blob</Copy>
</CustomInterface>
</Interface>
<Metadata>
<Metadatalnterface>
<CustomInterface>

<Download>GetBlobMetadata ; GetBlobProperties </Download>
<Upload>SetBlobMetadata; SetBlobProperties </Upload>

</CustomInterface>
</Metadatalnterface>

<MetadataSet type="SystemMetadata” abstraction="ValuePair”/>
<MetadataSet type="UserMetadata” abstraction="ValuePair”/>

</Metadata>

<Data DaysToExpiration="0" Formats="binary;text” ReadOnly="false”>

<RandomAccess/>
</Data>
</Object>

Figure 3: The Object element that describes the paged Blob storage service in the Windows Azure Platform.

is correctly processing these new elements; further sections
in this paper will address this issue.

S. DESCRIPTIONS OF STORAGE SYSTEMS

In this section we discuss the actual XML representation
of some of the most popular storage systems from the Ama-
zon and Azure clouds. We also give a high level description
of how we process these input files. Figure 3 is a snippet of
the XML file describing the Windows Azure platform that
belongs to the paged Blob service. (Figure 2 is the corre-
sponding section of the schema). This piece of code lists
all the valid operations on blobs, as well as the support for
attribute/value metadata and the type of data supported
(both binary and text that can be randomly accessed). The
AccessControl element is absent in this case, since Azure
does not allow access control lists at the blob level, but
rather at the container level. The rest of the XML file for
the Azure platform, as well as the Amazon platform, can be
downloaded from our website [19].

We present a high level view of the files in Table 1, where
we present some statistics about the different parts of our
schema. The description of the StorageAbstraction is a man-
ual and involved process: it requires reading the full docu-
mentation of each storage service. The output in terms of
lines of code is between 72 and 94, which leads us to believe
that any future modifications to this part would be easy to
implement.The description for each region (or datacenter)
is not larger than the descriptions of the abstraction. How-
ever, the number of regions in which a storage service is

offered is a significant factor in the length of the file: we
count 9 different region options for Windows Azure and 4
for Amazon. Here we are not concerned with the length of
the file, because after all it is supposed to be part of pro-
gram input. What we are trying to highlight is the expected
effort to create and maintain these files with accurate and
up-to-date information about the cloud providers.

The description of the storage abstraction of the schema
is a one-time effort only, plus the corresponding updates
whenever a cloud provider changes the storage service to
modify some features or add new ones (the latter one be-
ing much more likely). More prone to change is the infor-
mation regarding each region. Cost do change over time,
albeit slowly. More commonly there are offers and deals
that expire such as temporary free data input to a certain
cloud for a couple of months. Cloud providers could pub-
lish this cost information in a machine accessible way or
perhaps there is the possibility of automatically parsing the
HTML documentation. The performance measurements are
the most variable part of the schema and we believe that au-
tomation is very much possible. We have already mentioned
Azure Scope [13], which provides up-to-date information of
the performance of the storage services in the Azure cloud.
Using this website we can provide more accurate informa-
tion about the expected latency and throughput of the dif-
ferent services, under different conditions (size of the data,
number of batch requests, number of objects already in the
container, etc.). A similar website, such as CloudHarmony
or CloudClimate, or a benchmark running on behalf of the

Table 1: Average number of lines of XML code needed to describe a storage system, divided by schema
elements. Performance and Cost are child elements of Region. Region and StorageAbstraction are children

of StorageService.

Cloud Provider | StorageAbstraction | Region | Cost | Performance | StorageService | Total all platform services
Windows Azure 80 70 6 62 731 3673
Amazon 94 36 17 13 246 1498
Local Cluster 72 23 4 15 100 315

user could provide importable performance information for
other target cloud systems so there is no need for human
intervention; in this paper we collect the performance infor-
mation from the Azure Scope website for Windows Azure
and from our own micro-benchmarks for the Amazon cloud
and the local cluster.

6. USE CASES

In this section we present several use cases that, in our
opinion, reflect common situations that scientists and other
cloud users face. The selection of an storage system has
many implications for cloud applications; we provide valu-
able information about performance and cost expectations
evaluating different cloud providers and recommend for each
dataset a certain storage service. Currently our storage se-
lection application presents a standard Windows Forms in-
terface to the user, where each of the following use cases is
a separate section (tab). The tables included in this section
represent what the user sees on the screen.

We would also like to note that cloud computing is an
evolving field and therefore any decisions from our experi-
ments, which are presented in the following sections, could
change in the future if the cost and performance of cloud
services change. Up-to-date information on cloud services is
essential and we believe that our XML descriptions of the
storage services should be automatically updated, via cloud
benchmarks run by the user or via a service that provides
this information (we have already mentioned Azure Scope
and CloudHarmony).

6.1 Design of an application

The first of our use cases focuses on the choices that cloud
users make during the application design. At this stage we
assume that we have a good estimation of the data require-
ments of the application: for each dataset we have the size,
the required access latency and throughput and the number
of concurrent clients. Our application takes this information
and together with our description of the storage capabilities
of the different clouds produces an assignment of datasets
to storage services. For example, let’s consider the following
list of datasets and characteristics for a climate simulator:

e Climate measurements come from a satellite feed. It
is very important to not lose the data. The size of
the data is in the order of several GBs, it is read-only
and concurrent access is limited to up to 10 concurrent
clients.

e The application follows a bag-of-tasks model where in-
termediate results, in the range of 10s of MBs, are con-
tinuously being produced and consumed for up to 100
concurrent clients. High access latency or low through-
put could affect the overall application’s performance.

Table 2: Storage services recommendations for the
datasets in our first use case by cloud platform. An
* indicates storage systems that do not meet at least
one user requirement.

Dataset Amazon Azure Local Cluster
Satellite S3 Page Blob Hadoop*,
Data NFS*
Intermediate | S3 RRS*, | Page Blob*, NFS*

Results SimpleDB* Table*
Experimental S3 Page Blob, NFS
Results Block Blob

e The final result for each run is a single file, in the order
of MBs, which is read only and is globally accessible
for any scientist around the globe to download.

The storage service choices made by our application can
be summarized in Table 2. For the Azure cloud, the paged
Blob service may store the first dataset, where the expected
throughput is almost 14 MB/sec and the latency 225 ms. For
the second dataset there is not a single storage service that
would meet all the requirements. The paged Blob service
does not offer very low access latency (205 ms expected).
The Table service does have low latency (15 ms) but cannot
store items greater than 1MB. Thus, the user would have
to judge whether the application may tolerate higher access
latency or whether the data could be partitioned. In addi-
tion to the user choosing from several storage services that
do not meet all the requirements there could be cases where
there is missing information. For example, latency bench-
marks may not adequately cover the current use case: we
have measurements with 10 concurrent clients but not with
100. In this case we choose to display a warning message;
the final decision is the user’s. Finally, both the paged Blob
and the block Blob can meet the requirements for the third
dataset.

Similar results are presented for the Amazon cloud. Even
in this example with simple user requirements, we believe
that our application can provide value to the cloud user by
highlighting the differences between latency and bandwidth
for each cloud, as well as estimating the storage cost in order
to guide the application design process.

6.2 Cost savings analysis

In this use case we analyze an existing cloud application
that is currently running in a cloud provider. As an example
we will use the Amazon cloud. The developers and users of
the application would like to find out if they could lower the
monthly bill by switching storage services, within the same
cloud or from another cloud provider. For this example, let’s
consider the following usage of the Amazon storage services:

e S3 holds a total of 2.5 TB of data, which are located

Table 3: Storage services recommendations for our second use case, including monthly savings and tradeoffs.

Current Amazon Service Service Recommendation Savings Pros Cons
Service Region Cloud Service Region
S3 US CA Azure Page Blob US $11 2.09x better latency
S3 US CA Azure | Block Blob UsS $11 2.07x better latency
S3 US CA Amazon S3 Us $36
S3 US CA Amazon S3 RRS US $153.5 0.0099999% less durability
S3 US CA Amazon | S3 RRS US CA | $127.5 0.0099999% less durability
S3 US CA Local NFS Us $407.5 | 117.6x better latency | 0.499999% less durability
SimpleDB US CA Amazon | SimpleDB UsS $.2
RDS US CA Amazon RDS US $92
RDS US CA Azure SQL USs $130 1.31x better latency

in one bucket in the US Northern California Region.
The number of blobs stored is 10000.

e SimpleDB hosts data one data domain which stores
around 250,000 elements (8 GB).

e Relational Dabase Service stores a 4 GB database. The
average number of requests is 5,000 per day.

Table 3 shows the results. For each storage service we
present several alternatives that are cheaper. The storage
service with more alternatives is S3 and some of them within
Amazon. We can cut costs by changing to a cheaper region
in the US or by changing to the Reduced Redundancy Stor-
age. While in a cheaper region S3 continues to offer essen-
tially the same level of service, RRS has a tradeoff because
of the reduced durability. Also, the Azure cloud provides a
service slightly cheaper and with better access latency. Stor-
ing data in a local cluster is "free” and has very good latency
(local LAN), but is less durable. For the SimpleDB service
there are essentially no cheaper options (although there ex-
ists equivalent alternatives such as Azure Table or SimpleDB
in other regions with a similar cost). Finally, SQL Azure is
a cheaper alternative to RDS with better latency. The user,
given this information, can evaluate whether the tradeoffs
are possible and the savings are worth it.

6.3 Cost and performance estimation

There are many applications in which a change of the
backend storage services is difficult: cost of re-programming,
no access to source code, scientists have credits for use with
a certain cloud provider, etc. But even when the storage ser-
vices will continue to be the same ones, we believe that there
is value in giving the application user estimations for future
costs and performance. Given the resource usage detailed
in the previous Section 6.2, we shall consider the following
trends, this time using the Windows Azure cloud:

e The storage and number of requests in both Blob, Ta-
ble and SQL Azure will increase at three following
rates: 2%, 5% and 15% each month.

e The cloud user would like to consider three different
scenarios for concurrent access to the storage services:
10, 25 and 60 clients accessing the Blob and Table
data.

In our application we present a table of monthly costs for a
certain period of time -a year by default- and for every stor-
age service. Users can see the evolution of the storage costs

under different scenarios by changing the assumptions (data
growth rates and number of clients). For some cloud applica-
tions growth could follow a predictable pattern, for example
an application that is only used within a closed community
(research lab, university). Other cloud applications, which
are open to global users, could scale up suddenly if they be-
come popular. In the first case, we can offer the user with
the value of the future bill from the cloud provider. For
the second case, our application can provide the user with
cost estimations under several scenarios. Aside from cost,
we can also generate estimations for the performance met-
rics included in our XML schema, if they are available. For
example, using the Azure Table service we estimate that
with 10 concurrent clients the per client throughput will be
31 items/sec. This number does not vary if we increase the
number of concurrent clients up to 60. For the Blob service,
on the other hand, expected throughput is 28 MB/sec with
10 clients, 25 MB/sec with 25 clients and 17 MB/sec with
60 clients. In summary, given the information collected from
these different cloud storage services we can give the users
good cost and performance estimates for several scenarios.

6.4 Amazon EC2 to Eucalyptus

Software such as Eucalyptus [15] and OpenNebula [22]
can transform a local cluster into a private cloud. In this
use case, we consider the following scenario: an application
is being moved from the Amazon EC2 cloud to a local Eu-
calyptus deployment. What does the application user do
with the current data? One option would be to continue us-
ing the Amazon cloud, but data transfer fees and increased
latency can make this approach inviable. Another option
is to deploy a local storage system: given the latency and
throughput requirements we can choose a NF'S installation,
a Hadoop deployment or other local data storage systems.
Since researchers have already developed private cloud sys-
tems that mirror the functionality of public clouds (Euca-
lyptus and Amazon; Hadoop and Google’s Map Reduce and
Big Table), it is not unreasonable to expect that, in the near
future, an open implementation of storage services such as
Blob and Table (SimpleDB) that would expand the options
for local storage systems further. In this use case we con-
tinue with the usage example in Section 6.2 and recommend
the best storage system to select in the cloud or deploy lo-
cally.

The output of our application is synthesized in Table 4.
We compare each current storage service against local op-
tions and itself. In the latter case the client is moved from
the Amazon cloud to the local cluster and our application

Table 4: Storage recommendations for our fourth use case. Each current storage service used is compared
with local storage services and the current storage service; computation is moved to the local cluster from
Amazon EC2. Column cost reflects one time costs (transfer data to new service) as well as monthly cost.

Current New Latency | Throughput Comments Cost
Storage S. Storage S.
S3 NFS >1ms 39.02 S3 offers 1% more durability (99.99999999%) $250 one-time
MB/sec NFS container capacity is 10 GB (2500 GB req.) $0 monthly
S3 Hadoop DFS N/A N/A S3 offers 0.00099999% more durability (99.99999999%) | $250 one-time
Hadoop container capacity is 1024 GB (2500 GB req.) $0 monthly
Hadoop does not support random access
S3 GPFS N/A N/A S3 offers 0.00099999% more durability (99.99999999%) | $250 one-time
$0 monthly
S3 S3 205 ms 3.17 Data transfer fees incurred by each data access $0 one-time
(no change) MB/sec $362.5 monthly
SimpleDB MySQL 3.45 ms 288.8 SimpleDB offers 1% more durability (99.99999999%) $0.8 one-time
items/sec | Interface differences: SQLInterface and AttributeValue $0 monthly
SimpleDB SimpleDB 35.46 ms 28 Data transfer fees incurred by each data access $0 one-time
(no change) items/sec $5.88 monthly
RDS MySQL >1 ms 14359 RDS offers .5% more durability (99.5%) $0.7 one-time
items/sec $0 monthly
RDS RDS 13 ms 14172 Data transfer fees incurred by each data access $0 one-time
(no change) items/sec $328.2 monthly

considers the data transfer costs and the performance of the
remote accesses. Given this information the user can decide
where to move the data. For example, data currently being
stored in S3 can be moved to a local NFS if durability is
not a requirement. The available space is also very limited
(10 GB), so a local deployment needs to expand the cur-
rent storage capacity. Other options, such as Hadoop and
GPFS will be specially suitable if the number of concurrent
clients increases (here is assumed to be at most 10 for each
file/blob). Hadoop is closely related to the Map/Reduce
application model; this special access interface differs from
a randomly accessible file in UNIX and it must be taken
into account. As our last option, part of the data could be
archival data that may continue in S3 since the increase in
access latency is less important than the durability guaran-
tees. The user would have to continue paying storage fees
and data transfer fees (if the data needs to be retrieved).

SimpleDB is a more complex storage service that cur-
rently has no local counterpart: the most similar storage
system would be a traditional relational database.The mi-
gration from SimpleDB to a relational database would imply
the modification of the application access to the tables (or
domains in SimpleDB). Keeping the data in SimpleDB may
be the best course of action, especially if the latency in-
crease does not impact global application performance and
the data transfer cost is bearable. Since there are good and
free solutions to relational databases RDS can be easily sub-
stituted by a local MySQL deployment. In summary, in a
migration from a public cloud to a private cloud deployment
there are many possible choices for data movement; our ap-
plication can take the information about the capabilities of
each storage system to guide the migration.

In this use case we have assumed "free” local storage ser-
vices. However, there is no such thing as a free lunch; some-
one has to pay for it. It is a common case that scientists get
financial support from grants and companies to buy their
computational resources; the university provides the elec-
tricity and real estate. In this situation the scientists’ final

bill is what we present in Table 4. This does not imply that
we believe this to be true always: by modifying the stor-
age cost values in our XML descriptions of the local storage
we are able to express different cost models (the same ones
from the public cloud providers) and accurately represent
each local cluster.

7. EVALUATION

7.1 Extensibility of schema and algorithms

We have already mentioned the extensibility of the XML
schema; in this section we present an overview of the cost
of extending our algorithms so they are able to process
new elements and attributes in the XML descriptions of
the cloud provider. We will consider the following exam-
ple: data durability. Durability is a common requirement
and some cloud providers, such as Amazon, provides the
actual number (99.99999999% for S3) that each storage ser-
vice of the Amazon platform was designed to provide. In
the simple case, in order for a cloud to meet the user’s dura-
bility requirement we just have to find this attribute in the
StorageAbstraction element and compare it to the user’s in-
put. However, some of the cloud providers, such as Windows
Azure, do not provide this measurement and it is difficult to
compare storage services or to evaluate them. Therefore, we
have found the necessity of extending this simple durability
requirement evaluation to a more complex one.

In order to better evaluate the durability of two storage
services we have chosen to compare the number of repli-
cas and its location (in the same datacenter or multi-region
replication). If both storage services have equivalent levels
of replication we consider them to have essentially the same
durability (while this is not exactly true, we consider it to be
a good estimate when we lack more information about the
storage service implementation). Every data requirement
in our prototype application inherits from the Requirement
class, whose method match is called when evaluating a cer-
tain storage service and region combination from a cloud

Datacenter Location
Concurrency

Data Access

Data Size

Durability

Cost

Variable

o

100 200 300

Number of C# lines of code for each class extending Requirement

Figure 4: Number of C# lines of code for some of the
data requirements’ handling code in our application.

provider. Within this method the programmer has access
to the XML document (CloudProvider type). The return of
this method (MatchResult type) tells us if the storage service
matches the given requirement and any warnings or errors.

class Durability Requirement

override public Matchresult match(
CloudProvider ¢, Matchresult r,

string storageServicelD , string regionlD)

We give the numbers of C# lines of code in Figure 4 to
give the user a general overview of the programming cost of
extending our application. Requirements that involve check-
ing for simple elements and attributes, such as support for
concurrency or a certain type of access (random, stream,
attribute/value), can be coded in under 50 lines. More com-
plex ones, such as calculating the cost of a certain variable
(latency, throughput) require between 140 and 220 lines of
code. Our implementation of the Durability class was done
in 84 lines; we believe that the cost of extensibility is quite
low since the size of the code is manageable and it is a one-
time effort.

7.2 Use cases

Here we present the performance results of our application
for each of the use cases introduced in Section 6. We run
each use case 10 times, and Figure 5 shows the average wall
clock time. For every use case our application finishes in
less than 70 ms. We detail the time it takes to process
the XML descriptions of each cloud provider in the same
graph. Windows Azure takes longer than Amazon and Local
because we were able to include more detailed performance
information, thanks to the Azure Scope website. In our
second use case (cost savings) we first calculate the cost for
each storage service: if it is greater than the current service
we skip to the next service on the list. Thus, we do not
need to process most of the services. Use case number 3
(performance and cost estimates) focuses exclusively on the
Azure cloud, as use case number 4 (Amazon to Eucalyptus)
does with the Amazon cloud and the local cluster. The
XML files are located in the hard drive; the application time

80

[
5 7 B Other
=t
s W Local
S 60— -
ey Amazon
3 1 — e
28%0 W Azure
5 8
§ ﬁ 40 1 -
o=
2 €3
o
2
Q
° 20
e
[
E 10 - . i
F E—

0 I

1 2 3 4

Use Cases

Figure 5: Wallclock application time for each of the
use cases presented in Section 6 in miliseconds, di-
vided into time spent processing each cloud provider
and input/output processing (Other).

incurred to load these files is included under the Other label
together with input and output processing.

In the future, running times could become larger due to
the following factors: a more detailed description of each ser-
vice, an increase in the number of requirements processed,
and a greater number of cloud providers and regions. An in-
crease of details for the performance section is certainly pos-
sible and advisable: we can estimate better variables such
as latency and throughput with more data samples from
benchmarks. For example, our performance description for
Azure table includes latency measurements that vary based
on the number of concurrent clients. Additional data can re-
flect the performance impact of other factors such as entity
size, number of entities per table, etc. For our use cases we
analyze requirements such as data size, durability, calculate
cost and latency, etc. For any given community there will be
additional data requirements to process; these requirements,
however, would be essentially limited by the storage capabil-
ities described and the number of requirements expressed by
users. Finally, every region added will mean more process-
ing for cost and performance calculations; every new cloud
provider will have an impact similar to the ones detailed
in Figure 5. Given the current performance results, we feel
confident that our approach can accommodate these changes
without impacting the user experience. For future work we
are planning to include these software as a library that can
be used by a higher level data management software to fur-
ther automate the processing of data by cloud applications.

8. CONCLUSION

We have presented in this paper an automated approach
to the selection of cloud storage services that can meet the
user’s requirements. First, we have defined an XML schema
that guides the description of the different capabilities of
cloud storage systems. This schema is based on the docu-
mentation of different storage services and our experiences
with cloud computing. We use this XML schema to provide
descriptions for the storage services of Amazon, Azure and

some software that is commonly deployed in local clusters
(NFS, Hadoop, MySQL, etc.). Second, we have developed
an application that processes these XML descriptions and
attempts to match common data requirements from users
to them. Our application is also able to provide cost and
performance estimates. Both our XML schema and our ap-
plication can be easily extended to describe new features
and process new requirements. Finally, we have shown that,
in less than 70 ms, we are able to recommend storage ser-
vices for a cloud application, estimate possible cost savings
and tradeoffs by switching storage services, estimate stor-
age costs and performance under different growth scenarios,
and provide information to assist in the migration of cloud
applications to private cloud deployments.

9. REFERENCES

[1] Amazon. Amazon elastic compute cloud.
http://aws.amazon.com/ec2/, 2008.

[2] R. Ananthanarayanan, K. Gupta, P. Pandey,

H. Pucha, P. Sarkar, M. Shah, and R. Tewari. Cloud
analytics: do we really need to reinvent the storage
stack? In Workshop on Hot topics in cloud computing,
page 15, San Diego, 2009. USENIX Association.

[3] S. Andreozzi, S. Burke, L. Field, S. Fisher, B. Konya,
M. Mambelli, J. Schopf, M. Viljoen, and A. Wilson.
GLUE Schema Specification-Version 1.2. OGF
GLUE-WG@, 2007.

[4] Ann Chervenak, Ian Foster, Carl Kesselman, Charles
Salisbury, and Steven Tueckeb. The data grid:
Towards an architecture for the distributed
management and analysis of large scientific datasets.
Journal of Network and Computer Applications,
23(3):187-200, July 2000.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson,

A. Rabkin, and M. Zaharia. Above the Clouds: A
Berkeley View of Cloud Computing, 2009.

[6] S. Das, D. Agrawal, and A. E. Abbadi. ElasTraS: an
elastic transactional data store in the cloud. In
Workshop on Hot topics in cloud computing, page 7,
San Diego, 2009. USENIX Association.

[7] E. Deelman, G. Singh, M. Livny, B. Berriman, and
J. Good. The cost of doing science on the cloud: The
montage example. In International Conference for
High Performance Computing, Networking, Storage
and Analysis. SC., pages 1 —12, Nov. 2008.

[8] Girish Subramanian and Y. Simmhan. Tools for
Genome Haplotyping in the Windows Azure Cloud. In
Microsoft Research eScience Workshop, Microsoft
Research, 2009.

[9] A. J. G. Hey and A. E. Trefethen. The Data Deluge:
An e-Science Perspective, pages 809-824. July 2003.

[10] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and
M. Humphrey. Early observations on the performance
of Windows Azure. In Proceedings of the 19th ACM
International Symposium on High Performance
Distributed Computing, pages 367-376. ACM, 2010.
[11] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and
D. Anderson. Cost-benefit analysis of cloud computing
versus desktop grids. In IEEFE International
Symposium on Parallel Distributed Processing, pages 1
~12, May 2009.

[12] Microsoft. Microsoft Windows Azure Platform.
http://www.microsoft.com/windowsazure/, 2008.

[13] Microsoft Extreme Computing Group. Azure Scope.
http://azurescope.cloudapp.net/, 2010.

[14] R. Moreno-Vozmediano, R. S. Montero, and I. M.
Llorente. Elastic management of cluster-based services
in the cloud. In Proceedings of the Sizth IEEE
International Conference on Autonomic Computing
(ICAC’09), pages 1924, 20009.

[15] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli,

S. Soman, L. Youseff, and D. Zagorodnov. The
Eucalyptus Open-Source Cloud-Computing System.
CCGRID, pages 124-131, 2009.

[16] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and
S. Garfinkel. Amazon S3 for science grids: a viable
solution? In In Proceedings of the 2008 International
ACM Symposium on High Performance Parallel and
Distributed Computing, pages 55—64, 2008.

[17] S. Patil, G. A. Gibson, G. R. Ganger, J. Lopez,

M. Polte, W. Tantisiroj, and L. Xiao. In search of an
APT for scalable file systems: under the table or above
it? In Workshop on Hot topics in cloud computing,
page 13, San Diego, 2009. USENIX Association.

[18] R. Raman, M. Livny, and M. Solomon. Matchmaking;:
Distributed Resource Management for High
Throughput Computing. In Proceedings of the 7th
IEEE International Symposium on High Performance
Distributed Computing, pages 28-31, 1998.

[19] A. Ruiz-Alvarez and M. Humphrey. Xml descriptions
of amazon, azure and a local cluster.
http://www.cs.virginia.edu/”~ arbje/SCPaper.html.

[20] F. Schmuck and R. Haskin. GPFS: A shared-disk file
system for large computing clusters. In Conference on
File and Storage Technologies (FAST), pages 231-244,
May 2002.

[21] Y. Simmhan, C. V. Ingen, G. Subramanian, and J. Li.
Bridging the Gap between the Cloud and an eScience
Application Platform. In In Proceedings of the 2010
IEEE 3rd International Conference on Cloud
Computing, pages 474-481, 2010.

[22] B. Sotomayor, R. S. Montero, I. M. Llorente, and
I. Foster. Virtual Infrastructure Management in
Private and Hybrid Clouds. IEEE Internet
Computing, 13(5):14-22, Sept. 2009.

[23] S. Vazhkudai, S. Tuecke, and I. Foster. Replica
selection in the Globus Data Grid. In Proceedings of
the 1st IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGRID’01), pages
106-113, Brisbane, Qld. , Australia, May 2001.

